mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
3779 lines
117 KiB
3779 lines
117 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// Intel License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of Intel Corporation may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#ifdef HAVE_CVCONFIG_H |
|
#include "cvconfig.h" |
|
#endif |
|
|
|
#ifdef HAVE_MALLOC_H |
|
#include <malloc.h> |
|
#endif |
|
|
|
#ifdef HAVE_MEMORY_H |
|
#include <memory.h> |
|
#endif |
|
|
|
#ifdef _OPENMP |
|
#include <omp.h> |
|
#endif /* _OPENMP */ |
|
|
|
#include <cstdio> |
|
#include <cfloat> |
|
#include <cmath> |
|
#include <ctime> |
|
#include <climits> |
|
|
|
#include "_cvcommon.h" |
|
#include "cvclassifier.h" |
|
|
|
#ifdef _OPENMP |
|
#include "omp.h" |
|
#endif |
|
|
|
#define CV_BOOST_IMPL |
|
|
|
typedef struct CvValArray |
|
{ |
|
uchar* data; |
|
size_t step; |
|
} CvValArray; |
|
|
|
#define CMP_VALUES( idx1, idx2 ) \ |
|
( *( (float*) (aux->data + ((int) (idx1)) * aux->step ) ) < \ |
|
*( (float*) (aux->data + ((int) (idx2)) * aux->step ) ) ) |
|
|
|
CV_IMPLEMENT_QSORT_EX( icvSortIndexedValArray_16s, short, CMP_VALUES, CvValArray* ) |
|
|
|
CV_IMPLEMENT_QSORT_EX( icvSortIndexedValArray_32s, int, CMP_VALUES, CvValArray* ) |
|
|
|
CV_IMPLEMENT_QSORT_EX( icvSortIndexedValArray_32f, float, CMP_VALUES, CvValArray* ) |
|
|
|
CV_BOOST_IMPL |
|
void cvGetSortedIndices( CvMat* val, CvMat* idx, int sortcols ) |
|
{ |
|
int idxtype = 0; |
|
size_t istep = 0; |
|
size_t jstep = 0; |
|
|
|
int i = 0; |
|
int j = 0; |
|
|
|
CvValArray va; |
|
|
|
CV_Assert( idx != NULL ); |
|
CV_Assert( val != NULL ); |
|
|
|
idxtype = CV_MAT_TYPE( idx->type ); |
|
CV_Assert( idxtype == CV_16SC1 || idxtype == CV_32SC1 || idxtype == CV_32FC1 ); |
|
CV_Assert( CV_MAT_TYPE( val->type ) == CV_32FC1 ); |
|
if( sortcols ) |
|
{ |
|
CV_Assert( idx->rows == val->cols ); |
|
CV_Assert( idx->cols == val->rows ); |
|
istep = CV_ELEM_SIZE( val->type ); |
|
jstep = val->step; |
|
} |
|
else |
|
{ |
|
CV_Assert( idx->rows == val->rows ); |
|
CV_Assert( idx->cols == val->cols ); |
|
istep = val->step; |
|
jstep = CV_ELEM_SIZE( val->type ); |
|
} |
|
|
|
va.data = val->data.ptr; |
|
va.step = jstep; |
|
switch( idxtype ) |
|
{ |
|
case CV_16SC1: |
|
for( i = 0; i < idx->rows; i++ ) |
|
{ |
|
for( j = 0; j < idx->cols; j++ ) |
|
{ |
|
CV_MAT_ELEM( *idx, short, i, j ) = (short) j; |
|
} |
|
icvSortIndexedValArray_16s( (short*) (idx->data.ptr + (size_t)i * idx->step), |
|
idx->cols, &va ); |
|
va.data += istep; |
|
} |
|
break; |
|
|
|
case CV_32SC1: |
|
for( i = 0; i < idx->rows; i++ ) |
|
{ |
|
for( j = 0; j < idx->cols; j++ ) |
|
{ |
|
CV_MAT_ELEM( *idx, int, i, j ) = j; |
|
} |
|
icvSortIndexedValArray_32s( (int*) (idx->data.ptr + (size_t)i * idx->step), |
|
idx->cols, &va ); |
|
va.data += istep; |
|
} |
|
break; |
|
|
|
case CV_32FC1: |
|
for( i = 0; i < idx->rows; i++ ) |
|
{ |
|
for( j = 0; j < idx->cols; j++ ) |
|
{ |
|
CV_MAT_ELEM( *idx, float, i, j ) = (float) j; |
|
} |
|
icvSortIndexedValArray_32f( (float*) (idx->data.ptr + (size_t)i * idx->step), |
|
idx->cols, &va ); |
|
va.data += istep; |
|
} |
|
break; |
|
|
|
default: |
|
assert( 0 ); |
|
break; |
|
} |
|
} |
|
|
|
CV_BOOST_IMPL |
|
void cvReleaseStumpClassifier( CvClassifier** classifier ) |
|
{ |
|
cvFree( classifier ); |
|
*classifier = 0; |
|
} |
|
|
|
CV_BOOST_IMPL |
|
float cvEvalStumpClassifier( CvClassifier* classifier, CvMat* sample ) |
|
{ |
|
assert( classifier != NULL ); |
|
assert( sample != NULL ); |
|
assert( CV_MAT_TYPE( sample->type ) == CV_32FC1 ); |
|
|
|
if( (CV_MAT_ELEM( (*sample), float, 0, |
|
((CvStumpClassifier*) classifier)->compidx )) < |
|
((CvStumpClassifier*) classifier)->threshold ) |
|
return ((CvStumpClassifier*) classifier)->left; |
|
return ((CvStumpClassifier*) classifier)->right; |
|
} |
|
|
|
#define ICV_DEF_FIND_STUMP_THRESHOLD( suffix, type, error ) \ |
|
CV_BOOST_IMPL int icvFindStumpThreshold_##suffix( \ |
|
uchar* data, size_t datastep, \ |
|
uchar* wdata, size_t wstep, \ |
|
uchar* ydata, size_t ystep, \ |
|
uchar* idxdata, size_t idxstep, int num, \ |
|
float* lerror, \ |
|
float* rerror, \ |
|
float* threshold, float* left, float* right, \ |
|
float* sumw, float* sumwy, float* sumwyy ) \ |
|
{ \ |
|
int found = 0; \ |
|
float wyl = 0.0F; \ |
|
float wl = 0.0F; \ |
|
float wyyl = 0.0F; \ |
|
float wyr = 0.0F; \ |
|
float wr = 0.0F; \ |
|
\ |
|
float curleft = 0.0F; \ |
|
float curright = 0.0F; \ |
|
float* prevval = NULL; \ |
|
float* curval = NULL; \ |
|
float curlerror = 0.0F; \ |
|
float currerror = 0.0F; \ |
|
float wposl; \ |
|
float wposr; \ |
|
\ |
|
int i = 0; \ |
|
int idx = 0; \ |
|
\ |
|
wposl = wposr = 0.0F; \ |
|
if( *sumw == FLT_MAX ) \ |
|
{ \ |
|
/* calculate sums */ \ |
|
float *y = NULL; \ |
|
float *w = NULL; \ |
|
float wy = 0.0F; \ |
|
\ |
|
*sumw = 0.0F; \ |
|
*sumwy = 0.0F; \ |
|
*sumwyy = 0.0F; \ |
|
for( i = 0; i < num; i++ ) \ |
|
{ \ |
|
idx = (int) ( *((type*) (idxdata + i*idxstep)) ); \ |
|
w = (float*) (wdata + idx * wstep); \ |
|
*sumw += *w; \ |
|
y = (float*) (ydata + idx * ystep); \ |
|
wy = (*w) * (*y); \ |
|
*sumwy += wy; \ |
|
*sumwyy += wy * (*y); \ |
|
} \ |
|
} \ |
|
\ |
|
for( i = 0; i < num; i++ ) \ |
|
{ \ |
|
idx = (int) ( *((type*) (idxdata + i*idxstep)) ); \ |
|
curval = (float*) (data + idx * datastep); \ |
|
/* for debug purpose */ \ |
|
if( i > 0 ) assert( (*prevval) <= (*curval) ); \ |
|
\ |
|
wyr = *sumwy - wyl; \ |
|
wr = *sumw - wl; \ |
|
\ |
|
if( wl > 0.0 ) curleft = wyl / wl; \ |
|
else curleft = 0.0F; \ |
|
\ |
|
if( wr > 0.0 ) curright = wyr / wr; \ |
|
else curright = 0.0F; \ |
|
\ |
|
error \ |
|
\ |
|
if( curlerror + currerror < (*lerror) + (*rerror) ) \ |
|
{ \ |
|
(*lerror) = curlerror; \ |
|
(*rerror) = currerror; \ |
|
*threshold = *curval; \ |
|
if( i > 0 ) { \ |
|
*threshold = 0.5F * (*threshold + *prevval); \ |
|
} \ |
|
*left = curleft; \ |
|
*right = curright; \ |
|
found = 1; \ |
|
} \ |
|
\ |
|
do \ |
|
{ \ |
|
wl += *((float*) (wdata + idx * wstep)); \ |
|
wyl += (*((float*) (wdata + idx * wstep))) \ |
|
* (*((float*) (ydata + idx * ystep))); \ |
|
wyyl += *((float*) (wdata + idx * wstep)) \ |
|
* (*((float*) (ydata + idx * ystep))) \ |
|
* (*((float*) (ydata + idx * ystep))); \ |
|
} \ |
|
while( (++i) < num && \ |
|
( *((float*) (data + (idx = \ |
|
(int) ( *((type*) (idxdata + i*idxstep))) ) * datastep)) \ |
|
== *curval ) ); \ |
|
--i; \ |
|
prevval = curval; \ |
|
} /* for each value */ \ |
|
\ |
|
return found; \ |
|
} |
|
|
|
/* misclassification error |
|
* err = MIN( wpos, wneg ); |
|
*/ |
|
#define ICV_DEF_FIND_STUMP_THRESHOLD_MISC( suffix, type ) \ |
|
ICV_DEF_FIND_STUMP_THRESHOLD( misc_##suffix, type, \ |
|
wposl = 0.5F * ( wl + wyl ); \ |
|
wposr = 0.5F * ( wr + wyr ); \ |
|
curleft = 0.5F * ( 1.0F + curleft ); \ |
|
curright = 0.5F * ( 1.0F + curright ); \ |
|
curlerror = MIN( wposl, wl - wposl ); \ |
|
currerror = MIN( wposr, wr - wposr ); \ |
|
) |
|
|
|
/* gini error |
|
* err = 2 * wpos * wneg /(wpos + wneg) |
|
*/ |
|
#define ICV_DEF_FIND_STUMP_THRESHOLD_GINI( suffix, type ) \ |
|
ICV_DEF_FIND_STUMP_THRESHOLD( gini_##suffix, type, \ |
|
wposl = 0.5F * ( wl + wyl ); \ |
|
wposr = 0.5F * ( wr + wyr ); \ |
|
curleft = 0.5F * ( 1.0F + curleft ); \ |
|
curright = 0.5F * ( 1.0F + curright ); \ |
|
curlerror = 2.0F * wposl * ( 1.0F - curleft ); \ |
|
currerror = 2.0F * wposr * ( 1.0F - curright ); \ |
|
) |
|
|
|
#define CV_ENTROPY_THRESHOLD FLT_MIN |
|
|
|
/* entropy error |
|
* err = - wpos * log(wpos / (wpos + wneg)) - wneg * log(wneg / (wpos + wneg)) |
|
*/ |
|
#define ICV_DEF_FIND_STUMP_THRESHOLD_ENTROPY( suffix, type ) \ |
|
ICV_DEF_FIND_STUMP_THRESHOLD( entropy_##suffix, type, \ |
|
wposl = 0.5F * ( wl + wyl ); \ |
|
wposr = 0.5F * ( wr + wyr ); \ |
|
curleft = 0.5F * ( 1.0F + curleft ); \ |
|
curright = 0.5F * ( 1.0F + curright ); \ |
|
curlerror = currerror = 0.0F; \ |
|
if( curleft > CV_ENTROPY_THRESHOLD ) \ |
|
curlerror -= wposl * logf( curleft ); \ |
|
if( curleft < 1.0F - CV_ENTROPY_THRESHOLD ) \ |
|
curlerror -= (wl - wposl) * logf( 1.0F - curleft ); \ |
|
\ |
|
if( curright > CV_ENTROPY_THRESHOLD ) \ |
|
currerror -= wposr * logf( curright ); \ |
|
if( curright < 1.0F - CV_ENTROPY_THRESHOLD ) \ |
|
currerror -= (wr - wposr) * logf( 1.0F - curright ); \ |
|
) |
|
|
|
/* least sum of squares error */ |
|
#define ICV_DEF_FIND_STUMP_THRESHOLD_SQ( suffix, type ) \ |
|
ICV_DEF_FIND_STUMP_THRESHOLD( sq_##suffix, type, \ |
|
/* calculate error (sum of squares) */ \ |
|
/* err = sum( w * (y - left(rigt)Val)^2 ) */ \ |
|
curlerror = wyyl + curleft * curleft * wl - 2.0F * curleft * wyl; \ |
|
currerror = (*sumwyy) - wyyl + curright * curright * wr - 2.0F * curright * wyr; \ |
|
) |
|
|
|
ICV_DEF_FIND_STUMP_THRESHOLD_MISC( 16s, short ) |
|
|
|
ICV_DEF_FIND_STUMP_THRESHOLD_MISC( 32s, int ) |
|
|
|
ICV_DEF_FIND_STUMP_THRESHOLD_MISC( 32f, float ) |
|
|
|
|
|
ICV_DEF_FIND_STUMP_THRESHOLD_GINI( 16s, short ) |
|
|
|
ICV_DEF_FIND_STUMP_THRESHOLD_GINI( 32s, int ) |
|
|
|
ICV_DEF_FIND_STUMP_THRESHOLD_GINI( 32f, float ) |
|
|
|
|
|
ICV_DEF_FIND_STUMP_THRESHOLD_ENTROPY( 16s, short ) |
|
|
|
ICV_DEF_FIND_STUMP_THRESHOLD_ENTROPY( 32s, int ) |
|
|
|
ICV_DEF_FIND_STUMP_THRESHOLD_ENTROPY( 32f, float ) |
|
|
|
|
|
ICV_DEF_FIND_STUMP_THRESHOLD_SQ( 16s, short ) |
|
|
|
ICV_DEF_FIND_STUMP_THRESHOLD_SQ( 32s, int ) |
|
|
|
ICV_DEF_FIND_STUMP_THRESHOLD_SQ( 32f, float ) |
|
|
|
typedef int (*CvFindThresholdFunc)( uchar* data, size_t datastep, |
|
uchar* wdata, size_t wstep, |
|
uchar* ydata, size_t ystep, |
|
uchar* idxdata, size_t idxstep, int num, |
|
float* lerror, |
|
float* rerror, |
|
float* threshold, float* left, float* right, |
|
float* sumw, float* sumwy, float* sumwyy ); |
|
|
|
CvFindThresholdFunc findStumpThreshold_16s[4] = { |
|
icvFindStumpThreshold_misc_16s, |
|
icvFindStumpThreshold_gini_16s, |
|
icvFindStumpThreshold_entropy_16s, |
|
icvFindStumpThreshold_sq_16s |
|
}; |
|
|
|
CvFindThresholdFunc findStumpThreshold_32s[4] = { |
|
icvFindStumpThreshold_misc_32s, |
|
icvFindStumpThreshold_gini_32s, |
|
icvFindStumpThreshold_entropy_32s, |
|
icvFindStumpThreshold_sq_32s |
|
}; |
|
|
|
CvFindThresholdFunc findStumpThreshold_32f[4] = { |
|
icvFindStumpThreshold_misc_32f, |
|
icvFindStumpThreshold_gini_32f, |
|
icvFindStumpThreshold_entropy_32f, |
|
icvFindStumpThreshold_sq_32f |
|
}; |
|
|
|
CV_BOOST_IMPL |
|
CvClassifier* cvCreateStumpClassifier( CvMat* trainData, |
|
int flags, |
|
CvMat* trainClasses, |
|
CvMat* /*typeMask*/, |
|
CvMat* missedMeasurementsMask, |
|
CvMat* compIdx, |
|
CvMat* sampleIdx, |
|
CvMat* weights, |
|
CvClassifierTrainParams* trainParams |
|
) |
|
{ |
|
CvStumpClassifier* stump = NULL; |
|
int m = 0; /* number of samples */ |
|
int n = 0; /* number of components */ |
|
uchar* data = NULL; |
|
int cstep = 0; |
|
int sstep = 0; |
|
uchar* ydata = NULL; |
|
int ystep = 0; |
|
uchar* idxdata = NULL; |
|
int idxstep = 0; |
|
int l = 0; /* number of indices */ |
|
uchar* wdata = NULL; |
|
int wstep = 0; |
|
|
|
int* idx = NULL; |
|
int i = 0; |
|
|
|
float sumw = FLT_MAX; |
|
float sumwy = FLT_MAX; |
|
float sumwyy = FLT_MAX; |
|
|
|
CV_Assert( trainData != NULL ); |
|
CV_Assert( CV_MAT_TYPE( trainData->type ) == CV_32FC1 ); |
|
CV_Assert( trainClasses != NULL ); |
|
CV_Assert( CV_MAT_TYPE( trainClasses->type ) == CV_32FC1 ); |
|
CV_Assert( missedMeasurementsMask == NULL ); |
|
CV_Assert( compIdx == NULL ); |
|
CV_Assert( weights != NULL ); |
|
CV_Assert( CV_MAT_TYPE( weights->type ) == CV_32FC1 ); |
|
CV_Assert( trainParams != NULL ); |
|
|
|
data = trainData->data.ptr; |
|
if( CV_IS_ROW_SAMPLE( flags ) ) |
|
{ |
|
cstep = CV_ELEM_SIZE( trainData->type ); |
|
sstep = trainData->step; |
|
m = trainData->rows; |
|
n = trainData->cols; |
|
} |
|
else |
|
{ |
|
sstep = CV_ELEM_SIZE( trainData->type ); |
|
cstep = trainData->step; |
|
m = trainData->cols; |
|
n = trainData->rows; |
|
} |
|
|
|
ydata = trainClasses->data.ptr; |
|
if( trainClasses->rows == 1 ) |
|
{ |
|
assert( trainClasses->cols == m ); |
|
ystep = CV_ELEM_SIZE( trainClasses->type ); |
|
} |
|
else |
|
{ |
|
assert( trainClasses->rows == m ); |
|
ystep = trainClasses->step; |
|
} |
|
|
|
wdata = weights->data.ptr; |
|
if( weights->rows == 1 ) |
|
{ |
|
assert( weights->cols == m ); |
|
wstep = CV_ELEM_SIZE( weights->type ); |
|
} |
|
else |
|
{ |
|
assert( weights->rows == m ); |
|
wstep = weights->step; |
|
} |
|
|
|
l = m; |
|
if( sampleIdx != NULL ) |
|
{ |
|
assert( CV_MAT_TYPE( sampleIdx->type ) == CV_32FC1 ); |
|
|
|
idxdata = sampleIdx->data.ptr; |
|
if( sampleIdx->rows == 1 ) |
|
{ |
|
l = sampleIdx->cols; |
|
idxstep = CV_ELEM_SIZE( sampleIdx->type ); |
|
} |
|
else |
|
{ |
|
l = sampleIdx->rows; |
|
idxstep = sampleIdx->step; |
|
} |
|
assert( l <= m ); |
|
} |
|
|
|
idx = (int*) cvAlloc( l * sizeof( int ) ); |
|
stump = (CvStumpClassifier*) cvAlloc( sizeof( CvStumpClassifier) ); |
|
|
|
/* START */ |
|
memset( (void*) stump, 0, sizeof( CvStumpClassifier ) ); |
|
|
|
stump->eval = cvEvalStumpClassifier; |
|
stump->tune = NULL; |
|
stump->save = NULL; |
|
stump->release = cvReleaseStumpClassifier; |
|
|
|
stump->lerror = FLT_MAX; |
|
stump->rerror = FLT_MAX; |
|
stump->left = 0.0F; |
|
stump->right = 0.0F; |
|
|
|
/* copy indices */ |
|
if( sampleIdx != NULL ) |
|
{ |
|
for( i = 0; i < l; i++ ) |
|
{ |
|
idx[i] = (int) *((float*) (idxdata + i*idxstep)); |
|
} |
|
} |
|
else |
|
{ |
|
for( i = 0; i < l; i++ ) |
|
{ |
|
idx[i] = i; |
|
} |
|
} |
|
|
|
for( i = 0; i < n; i++ ) |
|
{ |
|
CvValArray va; |
|
|
|
va.data = data + i * ((size_t) cstep); |
|
va.step = sstep; |
|
icvSortIndexedValArray_32s( idx, l, &va ); |
|
if( findStumpThreshold_32s[(int) ((CvStumpTrainParams*) trainParams)->error] |
|
( data + i * ((size_t) cstep), sstep, |
|
wdata, wstep, ydata, ystep, (uchar*) idx, sizeof( int ), l, |
|
&(stump->lerror), &(stump->rerror), |
|
&(stump->threshold), &(stump->left), &(stump->right), |
|
&sumw, &sumwy, &sumwyy ) ) |
|
{ |
|
stump->compidx = i; |
|
} |
|
} /* for each component */ |
|
|
|
/* END */ |
|
|
|
cvFree( &idx ); |
|
|
|
if( ((CvStumpTrainParams*) trainParams)->type == CV_CLASSIFICATION_CLASS ) |
|
{ |
|
stump->left = 2.0F * (stump->left >= 0.5F) - 1.0F; |
|
stump->right = 2.0F * (stump->right >= 0.5F) - 1.0F; |
|
} |
|
|
|
return (CvClassifier*) stump; |
|
} |
|
|
|
/* |
|
* cvCreateMTStumpClassifier |
|
* |
|
* Multithreaded stump classifier constructor |
|
* Includes huge train data support through callback function |
|
*/ |
|
CV_BOOST_IMPL |
|
CvClassifier* cvCreateMTStumpClassifier( CvMat* trainData, |
|
int flags, |
|
CvMat* trainClasses, |
|
CvMat* /*typeMask*/, |
|
CvMat* missedMeasurementsMask, |
|
CvMat* compIdx, |
|
CvMat* sampleIdx, |
|
CvMat* weights, |
|
CvClassifierTrainParams* trainParams ) |
|
{ |
|
CvStumpClassifier* stump = NULL; |
|
int m = 0; /* number of samples */ |
|
int n = 0; /* number of components */ |
|
uchar* data = NULL; |
|
size_t cstep = 0; |
|
size_t sstep = 0; |
|
int datan = 0; /* num components */ |
|
uchar* ydata = NULL; |
|
size_t ystep = 0; |
|
uchar* idxdata = NULL; |
|
size_t idxstep = 0; |
|
int l = 0; /* number of indices */ |
|
uchar* wdata = NULL; |
|
size_t wstep = 0; |
|
|
|
uchar* sorteddata = NULL; |
|
int sortedtype = 0; |
|
size_t sortedcstep = 0; /* component step */ |
|
size_t sortedsstep = 0; /* sample step */ |
|
int sortedn = 0; /* num components */ |
|
int sortedm = 0; /* num samples */ |
|
|
|
char* filter = NULL; |
|
int i = 0; |
|
|
|
int compidx = 0; |
|
int stumperror; |
|
int portion; |
|
|
|
/* private variables */ |
|
CvMat mat; |
|
CvValArray va; |
|
float lerror; |
|
float rerror; |
|
float left; |
|
float right; |
|
float threshold; |
|
int optcompidx; |
|
|
|
float sumw; |
|
float sumwy; |
|
float sumwyy; |
|
|
|
int t_compidx; |
|
int t_n; |
|
|
|
int ti; |
|
int tj; |
|
int tk; |
|
|
|
uchar* t_data; |
|
size_t t_cstep; |
|
size_t t_sstep; |
|
|
|
size_t matcstep; |
|
size_t matsstep; |
|
|
|
int* t_idx; |
|
/* end private variables */ |
|
|
|
CV_Assert( trainParams != NULL ); |
|
CV_Assert( trainClasses != NULL ); |
|
CV_Assert( CV_MAT_TYPE( trainClasses->type ) == CV_32FC1 ); |
|
CV_Assert( missedMeasurementsMask == NULL ); |
|
CV_Assert( compIdx == NULL ); |
|
|
|
stumperror = (int) ((CvMTStumpTrainParams*) trainParams)->error; |
|
|
|
ydata = trainClasses->data.ptr; |
|
if( trainClasses->rows == 1 ) |
|
{ |
|
m = trainClasses->cols; |
|
ystep = CV_ELEM_SIZE( trainClasses->type ); |
|
} |
|
else |
|
{ |
|
m = trainClasses->rows; |
|
ystep = trainClasses->step; |
|
} |
|
|
|
wdata = weights->data.ptr; |
|
if( weights->rows == 1 ) |
|
{ |
|
CV_Assert( weights->cols == m ); |
|
wstep = CV_ELEM_SIZE( weights->type ); |
|
} |
|
else |
|
{ |
|
CV_Assert( weights->rows == m ); |
|
wstep = weights->step; |
|
} |
|
|
|
if( ((CvMTStumpTrainParams*) trainParams)->sortedIdx != NULL ) |
|
{ |
|
sortedtype = |
|
CV_MAT_TYPE( ((CvMTStumpTrainParams*) trainParams)->sortedIdx->type ); |
|
assert( sortedtype == CV_16SC1 || sortedtype == CV_32SC1 |
|
|| sortedtype == CV_32FC1 ); |
|
sorteddata = ((CvMTStumpTrainParams*) trainParams)->sortedIdx->data.ptr; |
|
sortedsstep = CV_ELEM_SIZE( sortedtype ); |
|
sortedcstep = ((CvMTStumpTrainParams*) trainParams)->sortedIdx->step; |
|
sortedn = ((CvMTStumpTrainParams*) trainParams)->sortedIdx->rows; |
|
sortedm = ((CvMTStumpTrainParams*) trainParams)->sortedIdx->cols; |
|
} |
|
|
|
if( trainData == NULL ) |
|
{ |
|
assert( ((CvMTStumpTrainParams*) trainParams)->getTrainData != NULL ); |
|
n = ((CvMTStumpTrainParams*) trainParams)->numcomp; |
|
assert( n > 0 ); |
|
} |
|
else |
|
{ |
|
assert( CV_MAT_TYPE( trainData->type ) == CV_32FC1 ); |
|
data = trainData->data.ptr; |
|
if( CV_IS_ROW_SAMPLE( flags ) ) |
|
{ |
|
cstep = CV_ELEM_SIZE( trainData->type ); |
|
sstep = trainData->step; |
|
assert( m == trainData->rows ); |
|
datan = n = trainData->cols; |
|
} |
|
else |
|
{ |
|
sstep = CV_ELEM_SIZE( trainData->type ); |
|
cstep = trainData->step; |
|
assert( m == trainData->cols ); |
|
datan = n = trainData->rows; |
|
} |
|
if( ((CvMTStumpTrainParams*) trainParams)->getTrainData != NULL ) |
|
{ |
|
n = ((CvMTStumpTrainParams*) trainParams)->numcomp; |
|
} |
|
} |
|
assert( datan <= n ); |
|
|
|
if( sampleIdx != NULL ) |
|
{ |
|
assert( CV_MAT_TYPE( sampleIdx->type ) == CV_32FC1 ); |
|
idxdata = sampleIdx->data.ptr; |
|
idxstep = ( sampleIdx->rows == 1 ) |
|
? CV_ELEM_SIZE( sampleIdx->type ) : sampleIdx->step; |
|
l = ( sampleIdx->rows == 1 ) ? sampleIdx->cols : sampleIdx->rows; |
|
|
|
if( sorteddata != NULL ) |
|
{ |
|
filter = (char*) cvAlloc( sizeof( char ) * m ); |
|
memset( (void*) filter, 0, sizeof( char ) * m ); |
|
for( i = 0; i < l; i++ ) |
|
{ |
|
filter[(int) *((float*) (idxdata + i * idxstep))] = (char) 1; |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
l = m; |
|
} |
|
|
|
stump = (CvStumpClassifier*) cvAlloc( sizeof( CvStumpClassifier) ); |
|
|
|
/* START */ |
|
memset( (void*) stump, 0, sizeof( CvStumpClassifier ) ); |
|
|
|
portion = ((CvMTStumpTrainParams*)trainParams)->portion; |
|
|
|
if( portion < 1 ) |
|
{ |
|
/* auto portion */ |
|
portion = n; |
|
#ifdef _OPENMP |
|
portion /= omp_get_max_threads(); |
|
#endif /* _OPENMP */ |
|
} |
|
|
|
stump->eval = cvEvalStumpClassifier; |
|
stump->tune = NULL; |
|
stump->save = NULL; |
|
stump->release = cvReleaseStumpClassifier; |
|
|
|
stump->lerror = FLT_MAX; |
|
stump->rerror = FLT_MAX; |
|
stump->left = 0.0F; |
|
stump->right = 0.0F; |
|
|
|
compidx = 0; |
|
#ifdef _OPENMP |
|
#pragma omp parallel private(mat, va, lerror, rerror, left, right, threshold, \ |
|
optcompidx, sumw, sumwy, sumwyy, t_compidx, t_n, \ |
|
ti, tj, tk, t_data, t_cstep, t_sstep, matcstep, \ |
|
matsstep, t_idx) |
|
#endif /* _OPENMP */ |
|
{ |
|
lerror = FLT_MAX; |
|
rerror = FLT_MAX; |
|
left = 0.0F; |
|
right = 0.0F; |
|
threshold = 0.0F; |
|
optcompidx = 0; |
|
|
|
sumw = FLT_MAX; |
|
sumwy = FLT_MAX; |
|
sumwyy = FLT_MAX; |
|
|
|
t_compidx = 0; |
|
t_n = 0; |
|
|
|
ti = 0; |
|
tj = 0; |
|
tk = 0; |
|
|
|
t_data = NULL; |
|
t_cstep = 0; |
|
t_sstep = 0; |
|
|
|
matcstep = 0; |
|
matsstep = 0; |
|
|
|
t_idx = NULL; |
|
|
|
mat.data.ptr = NULL; |
|
|
|
if( datan < n ) |
|
{ |
|
/* prepare matrix for callback */ |
|
if( CV_IS_ROW_SAMPLE( flags ) ) |
|
{ |
|
mat = cvMat( m, portion, CV_32FC1, 0 ); |
|
matcstep = CV_ELEM_SIZE( mat.type ); |
|
matsstep = mat.step; |
|
} |
|
else |
|
{ |
|
mat = cvMat( portion, m, CV_32FC1, 0 ); |
|
matcstep = mat.step; |
|
matsstep = CV_ELEM_SIZE( mat.type ); |
|
} |
|
mat.data.ptr = (uchar*) cvAlloc( sizeof( float ) * mat.rows * mat.cols ); |
|
} |
|
|
|
if( filter != NULL || sortedn < n ) |
|
{ |
|
t_idx = (int*) cvAlloc( sizeof( int ) * m ); |
|
if( sortedn == 0 || filter == NULL ) |
|
{ |
|
if( idxdata != NULL ) |
|
{ |
|
for( ti = 0; ti < l; ti++ ) |
|
{ |
|
t_idx[ti] = (int) *((float*) (idxdata + ti * idxstep)); |
|
} |
|
} |
|
else |
|
{ |
|
for( ti = 0; ti < l; ti++ ) |
|
{ |
|
t_idx[ti] = ti; |
|
} |
|
} |
|
} |
|
} |
|
|
|
#ifdef _OPENMP |
|
#pragma omp critical(c_compidx) |
|
#endif /* _OPENMP */ |
|
{ |
|
t_compidx = compidx; |
|
compidx += portion; |
|
} |
|
while( t_compidx < n ) |
|
{ |
|
t_n = portion; |
|
if( t_compidx < datan ) |
|
{ |
|
t_n = ( t_n < (datan - t_compidx) ) ? t_n : (datan - t_compidx); |
|
t_data = data; |
|
t_cstep = cstep; |
|
t_sstep = sstep; |
|
} |
|
else |
|
{ |
|
t_n = ( t_n < (n - t_compidx) ) ? t_n : (n - t_compidx); |
|
t_cstep = matcstep; |
|
t_sstep = matsstep; |
|
t_data = mat.data.ptr - t_compidx * ((size_t) t_cstep ); |
|
|
|
/* calculate components */ |
|
((CvMTStumpTrainParams*)trainParams)->getTrainData( &mat, |
|
sampleIdx, compIdx, t_compidx, t_n, |
|
((CvMTStumpTrainParams*)trainParams)->userdata ); |
|
} |
|
|
|
if( sorteddata != NULL ) |
|
{ |
|
if( filter != NULL ) |
|
{ |
|
/* have sorted indices and filter */ |
|
switch( sortedtype ) |
|
{ |
|
case CV_16SC1: |
|
for( ti = t_compidx; ti < MIN( sortedn, t_compidx + t_n ); ti++ ) |
|
{ |
|
tk = 0; |
|
for( tj = 0; tj < sortedm; tj++ ) |
|
{ |
|
int curidx = (int) ( *((short*) (sorteddata |
|
+ ti * sortedcstep + tj * sortedsstep)) ); |
|
if( filter[curidx] != 0 ) |
|
{ |
|
t_idx[tk++] = curidx; |
|
} |
|
} |
|
if( findStumpThreshold_32s[stumperror]( |
|
t_data + ti * t_cstep, t_sstep, |
|
wdata, wstep, ydata, ystep, |
|
(uchar*) t_idx, sizeof( int ), tk, |
|
&lerror, &rerror, |
|
&threshold, &left, &right, |
|
&sumw, &sumwy, &sumwyy ) ) |
|
{ |
|
optcompidx = ti; |
|
} |
|
} |
|
break; |
|
case CV_32SC1: |
|
for( ti = t_compidx; ti < MIN( sortedn, t_compidx + t_n ); ti++ ) |
|
{ |
|
tk = 0; |
|
for( tj = 0; tj < sortedm; tj++ ) |
|
{ |
|
int curidx = (int) ( *((int*) (sorteddata |
|
+ ti * sortedcstep + tj * sortedsstep)) ); |
|
if( filter[curidx] != 0 ) |
|
{ |
|
t_idx[tk++] = curidx; |
|
} |
|
} |
|
if( findStumpThreshold_32s[stumperror]( |
|
t_data + ti * t_cstep, t_sstep, |
|
wdata, wstep, ydata, ystep, |
|
(uchar*) t_idx, sizeof( int ), tk, |
|
&lerror, &rerror, |
|
&threshold, &left, &right, |
|
&sumw, &sumwy, &sumwyy ) ) |
|
{ |
|
optcompidx = ti; |
|
} |
|
} |
|
break; |
|
case CV_32FC1: |
|
for( ti = t_compidx; ti < MIN( sortedn, t_compidx + t_n ); ti++ ) |
|
{ |
|
tk = 0; |
|
for( tj = 0; tj < sortedm; tj++ ) |
|
{ |
|
int curidx = (int) ( *((float*) (sorteddata |
|
+ ti * sortedcstep + tj * sortedsstep)) ); |
|
if( filter[curidx] != 0 ) |
|
{ |
|
t_idx[tk++] = curidx; |
|
} |
|
} |
|
if( findStumpThreshold_32s[stumperror]( |
|
t_data + ti * t_cstep, t_sstep, |
|
wdata, wstep, ydata, ystep, |
|
(uchar*) t_idx, sizeof( int ), tk, |
|
&lerror, &rerror, |
|
&threshold, &left, &right, |
|
&sumw, &sumwy, &sumwyy ) ) |
|
{ |
|
optcompidx = ti; |
|
} |
|
} |
|
break; |
|
default: |
|
assert( 0 ); |
|
break; |
|
} |
|
} |
|
else |
|
{ |
|
/* have sorted indices */ |
|
switch( sortedtype ) |
|
{ |
|
case CV_16SC1: |
|
for( ti = t_compidx; ti < MIN( sortedn, t_compidx + t_n ); ti++ ) |
|
{ |
|
if( findStumpThreshold_16s[stumperror]( |
|
t_data + ti * t_cstep, t_sstep, |
|
wdata, wstep, ydata, ystep, |
|
sorteddata + ti * sortedcstep, sortedsstep, sortedm, |
|
&lerror, &rerror, |
|
&threshold, &left, &right, |
|
&sumw, &sumwy, &sumwyy ) ) |
|
{ |
|
optcompidx = ti; |
|
} |
|
} |
|
break; |
|
case CV_32SC1: |
|
for( ti = t_compidx; ti < MIN( sortedn, t_compidx + t_n ); ti++ ) |
|
{ |
|
if( findStumpThreshold_32s[stumperror]( |
|
t_data + ti * t_cstep, t_sstep, |
|
wdata, wstep, ydata, ystep, |
|
sorteddata + ti * sortedcstep, sortedsstep, sortedm, |
|
&lerror, &rerror, |
|
&threshold, &left, &right, |
|
&sumw, &sumwy, &sumwyy ) ) |
|
{ |
|
optcompidx = ti; |
|
} |
|
} |
|
break; |
|
case CV_32FC1: |
|
for( ti = t_compidx; ti < MIN( sortedn, t_compidx + t_n ); ti++ ) |
|
{ |
|
if( findStumpThreshold_32f[stumperror]( |
|
t_data + ti * t_cstep, t_sstep, |
|
wdata, wstep, ydata, ystep, |
|
sorteddata + ti * sortedcstep, sortedsstep, sortedm, |
|
&lerror, &rerror, |
|
&threshold, &left, &right, |
|
&sumw, &sumwy, &sumwyy ) ) |
|
{ |
|
optcompidx = ti; |
|
} |
|
} |
|
break; |
|
default: |
|
assert( 0 ); |
|
break; |
|
} |
|
} |
|
} |
|
|
|
ti = MAX( t_compidx, MIN( sortedn, t_compidx + t_n ) ); |
|
for( ; ti < t_compidx + t_n; ti++ ) |
|
{ |
|
va.data = t_data + ti * t_cstep; |
|
va.step = t_sstep; |
|
icvSortIndexedValArray_32s( t_idx, l, &va ); |
|
if( findStumpThreshold_32s[stumperror]( |
|
t_data + ti * t_cstep, t_sstep, |
|
wdata, wstep, ydata, ystep, |
|
(uchar*)t_idx, sizeof( int ), l, |
|
&lerror, &rerror, |
|
&threshold, &left, &right, |
|
&sumw, &sumwy, &sumwyy ) ) |
|
{ |
|
optcompidx = ti; |
|
} |
|
} |
|
#ifdef _OPENMP |
|
#pragma omp critical(c_compidx) |
|
#endif /* _OPENMP */ |
|
{ |
|
t_compidx = compidx; |
|
compidx += portion; |
|
} |
|
} /* while have training data */ |
|
|
|
/* get the best classifier */ |
|
#ifdef _OPENMP |
|
#pragma omp critical(c_beststump) |
|
#endif /* _OPENMP */ |
|
{ |
|
if( lerror + rerror < stump->lerror + stump->rerror ) |
|
{ |
|
stump->lerror = lerror; |
|
stump->rerror = rerror; |
|
stump->compidx = optcompidx; |
|
stump->threshold = threshold; |
|
stump->left = left; |
|
stump->right = right; |
|
} |
|
} |
|
|
|
/* free allocated memory */ |
|
if( mat.data.ptr != NULL ) |
|
{ |
|
cvFree( &(mat.data.ptr) ); |
|
} |
|
if( t_idx != NULL ) |
|
{ |
|
cvFree( &t_idx ); |
|
} |
|
} /* end of parallel region */ |
|
|
|
/* END */ |
|
|
|
/* free allocated memory */ |
|
if( filter != NULL ) |
|
{ |
|
cvFree( &filter ); |
|
} |
|
|
|
if( ((CvMTStumpTrainParams*) trainParams)->type == CV_CLASSIFICATION_CLASS ) |
|
{ |
|
stump->left = 2.0F * (stump->left >= 0.5F) - 1.0F; |
|
stump->right = 2.0F * (stump->right >= 0.5F) - 1.0F; |
|
} |
|
|
|
return (CvClassifier*) stump; |
|
} |
|
|
|
CV_BOOST_IMPL |
|
float cvEvalCARTClassifier( CvClassifier* classifier, CvMat* sample ) |
|
{ |
|
CV_FUNCNAME( "cvEvalCARTClassifier" ); |
|
|
|
int idx = 0; |
|
|
|
__BEGIN__; |
|
|
|
|
|
CV_ASSERT( classifier != NULL ); |
|
CV_ASSERT( sample != NULL ); |
|
CV_ASSERT( CV_MAT_TYPE( sample->type ) == CV_32FC1 ); |
|
CV_ASSERT( sample->rows == 1 || sample->cols == 1 ); |
|
|
|
if( sample->rows == 1 ) |
|
{ |
|
do |
|
{ |
|
if( (CV_MAT_ELEM( (*sample), float, 0, |
|
((CvCARTClassifier*) classifier)->compidx[idx] )) < |
|
((CvCARTClassifier*) classifier)->threshold[idx] ) |
|
{ |
|
idx = ((CvCARTClassifier*) classifier)->left[idx]; |
|
} |
|
else |
|
{ |
|
idx = ((CvCARTClassifier*) classifier)->right[idx]; |
|
} |
|
} while( idx > 0 ); |
|
} |
|
else |
|
{ |
|
do |
|
{ |
|
if( (CV_MAT_ELEM( (*sample), float, |
|
((CvCARTClassifier*) classifier)->compidx[idx], 0 )) < |
|
((CvCARTClassifier*) classifier)->threshold[idx] ) |
|
{ |
|
idx = ((CvCARTClassifier*) classifier)->left[idx]; |
|
} |
|
else |
|
{ |
|
idx = ((CvCARTClassifier*) classifier)->right[idx]; |
|
} |
|
} while( idx > 0 ); |
|
} |
|
|
|
__END__; |
|
|
|
return ((CvCARTClassifier*) classifier)->val[-idx]; |
|
} |
|
|
|
CV_BOOST_IMPL |
|
float cvEvalCARTClassifierIdx( CvClassifier* classifier, CvMat* sample ) |
|
{ |
|
CV_FUNCNAME( "cvEvalCARTClassifierIdx" ); |
|
|
|
int idx = 0; |
|
|
|
__BEGIN__; |
|
|
|
|
|
CV_ASSERT( classifier != NULL ); |
|
CV_ASSERT( sample != NULL ); |
|
CV_ASSERT( CV_MAT_TYPE( sample->type ) == CV_32FC1 ); |
|
CV_ASSERT( sample->rows == 1 || sample->cols == 1 ); |
|
|
|
if( sample->rows == 1 ) |
|
{ |
|
do |
|
{ |
|
if( (CV_MAT_ELEM( (*sample), float, 0, |
|
((CvCARTClassifier*) classifier)->compidx[idx] )) < |
|
((CvCARTClassifier*) classifier)->threshold[idx] ) |
|
{ |
|
idx = ((CvCARTClassifier*) classifier)->left[idx]; |
|
} |
|
else |
|
{ |
|
idx = ((CvCARTClassifier*) classifier)->right[idx]; |
|
} |
|
} while( idx > 0 ); |
|
} |
|
else |
|
{ |
|
do |
|
{ |
|
if( (CV_MAT_ELEM( (*sample), float, |
|
((CvCARTClassifier*) classifier)->compidx[idx], 0 )) < |
|
((CvCARTClassifier*) classifier)->threshold[idx] ) |
|
{ |
|
idx = ((CvCARTClassifier*) classifier)->left[idx]; |
|
} |
|
else |
|
{ |
|
idx = ((CvCARTClassifier*) classifier)->right[idx]; |
|
} |
|
} while( idx > 0 ); |
|
} |
|
|
|
__END__; |
|
|
|
return (float) (-idx); |
|
} |
|
|
|
CV_BOOST_IMPL |
|
void cvReleaseCARTClassifier( CvClassifier** classifier ) |
|
{ |
|
cvFree( classifier ); |
|
*classifier = NULL; |
|
} |
|
|
|
void CV_CDECL icvDefaultSplitIdx_R( int compidx, float threshold, |
|
CvMat* idx, CvMat** left, CvMat** right, |
|
void* userdata ) |
|
{ |
|
CvMat* trainData = (CvMat*) userdata; |
|
int i = 0; |
|
|
|
*left = cvCreateMat( 1, trainData->rows, CV_32FC1 ); |
|
*right = cvCreateMat( 1, trainData->rows, CV_32FC1 ); |
|
(*left)->cols = (*right)->cols = 0; |
|
if( idx == NULL ) |
|
{ |
|
for( i = 0; i < trainData->rows; i++ ) |
|
{ |
|
if( CV_MAT_ELEM( *trainData, float, i, compidx ) < threshold ) |
|
{ |
|
(*left)->data.fl[(*left)->cols++] = (float) i; |
|
} |
|
else |
|
{ |
|
(*right)->data.fl[(*right)->cols++] = (float) i; |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
uchar* idxdata; |
|
int idxnum; |
|
int idxstep; |
|
int index; |
|
|
|
idxdata = idx->data.ptr; |
|
idxnum = (idx->rows == 1) ? idx->cols : idx->rows; |
|
idxstep = (idx->rows == 1) ? CV_ELEM_SIZE( idx->type ) : idx->step; |
|
for( i = 0; i < idxnum; i++ ) |
|
{ |
|
index = (int) *((float*) (idxdata + i * idxstep)); |
|
if( CV_MAT_ELEM( *trainData, float, index, compidx ) < threshold ) |
|
{ |
|
(*left)->data.fl[(*left)->cols++] = (float) index; |
|
} |
|
else |
|
{ |
|
(*right)->data.fl[(*right)->cols++] = (float) index; |
|
} |
|
} |
|
} |
|
} |
|
|
|
void CV_CDECL icvDefaultSplitIdx_C( int compidx, float threshold, |
|
CvMat* idx, CvMat** left, CvMat** right, |
|
void* userdata ) |
|
{ |
|
CvMat* trainData = (CvMat*) userdata; |
|
int i = 0; |
|
|
|
*left = cvCreateMat( 1, trainData->cols, CV_32FC1 ); |
|
*right = cvCreateMat( 1, trainData->cols, CV_32FC1 ); |
|
(*left)->cols = (*right)->cols = 0; |
|
if( idx == NULL ) |
|
{ |
|
for( i = 0; i < trainData->cols; i++ ) |
|
{ |
|
if( CV_MAT_ELEM( *trainData, float, compidx, i ) < threshold ) |
|
{ |
|
(*left)->data.fl[(*left)->cols++] = (float) i; |
|
} |
|
else |
|
{ |
|
(*right)->data.fl[(*right)->cols++] = (float) i; |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
uchar* idxdata; |
|
int idxnum; |
|
int idxstep; |
|
int index; |
|
|
|
idxdata = idx->data.ptr; |
|
idxnum = (idx->rows == 1) ? idx->cols : idx->rows; |
|
idxstep = (idx->rows == 1) ? CV_ELEM_SIZE( idx->type ) : idx->step; |
|
for( i = 0; i < idxnum; i++ ) |
|
{ |
|
index = (int) *((float*) (idxdata + i * idxstep)); |
|
if( CV_MAT_ELEM( *trainData, float, compidx, index ) < threshold ) |
|
{ |
|
(*left)->data.fl[(*left)->cols++] = (float) index; |
|
} |
|
else |
|
{ |
|
(*right)->data.fl[(*right)->cols++] = (float) index; |
|
} |
|
} |
|
} |
|
} |
|
|
|
/* internal structure used in CART creation */ |
|
typedef struct CvCARTNode |
|
{ |
|
CvMat* sampleIdx; |
|
CvStumpClassifier* stump; |
|
int parent; |
|
int leftflag; |
|
float errdrop; |
|
} CvCARTNode; |
|
|
|
CV_BOOST_IMPL |
|
CvClassifier* cvCreateCARTClassifier( CvMat* trainData, |
|
int flags, |
|
CvMat* trainClasses, |
|
CvMat* typeMask, |
|
CvMat* missedMeasurementsMask, |
|
CvMat* compIdx, |
|
CvMat* sampleIdx, |
|
CvMat* weights, |
|
CvClassifierTrainParams* trainParams ) |
|
{ |
|
CvCARTClassifier* cart = NULL; |
|
size_t datasize = 0; |
|
int count = 0; |
|
int i = 0; |
|
int j = 0; |
|
|
|
CvCARTNode* intnode = NULL; |
|
CvCARTNode* list = NULL; |
|
int listcount = 0; |
|
CvMat* lidx = NULL; |
|
CvMat* ridx = NULL; |
|
|
|
float maxerrdrop = 0.0F; |
|
int idx = 0; |
|
|
|
void (*splitIdxCallback)( int compidx, float threshold, |
|
CvMat* idx, CvMat** left, CvMat** right, |
|
void* userdata ); |
|
void* userdata; |
|
|
|
count = ((CvCARTTrainParams*) trainParams)->count; |
|
|
|
assert( count > 0 ); |
|
|
|
datasize = sizeof( *cart ) + (sizeof( float ) + 3 * sizeof( int )) * count + |
|
sizeof( float ) * (count + 1); |
|
|
|
cart = (CvCARTClassifier*) cvAlloc( datasize ); |
|
memset( cart, 0, datasize ); |
|
|
|
cart->count = count; |
|
|
|
cart->eval = cvEvalCARTClassifier; |
|
cart->save = NULL; |
|
cart->release = cvReleaseCARTClassifier; |
|
|
|
cart->compidx = (int*) (cart + 1); |
|
cart->threshold = (float*) (cart->compidx + count); |
|
cart->left = (int*) (cart->threshold + count); |
|
cart->right = (int*) (cart->left + count); |
|
cart->val = (float*) (cart->right + count); |
|
|
|
datasize = sizeof( CvCARTNode ) * (count + count); |
|
intnode = (CvCARTNode*) cvAlloc( datasize ); |
|
memset( intnode, 0, datasize ); |
|
list = (CvCARTNode*) (intnode + count); |
|
|
|
splitIdxCallback = ((CvCARTTrainParams*) trainParams)->splitIdx; |
|
userdata = ((CvCARTTrainParams*) trainParams)->userdata; |
|
if( splitIdxCallback == NULL ) |
|
{ |
|
splitIdxCallback = ( CV_IS_ROW_SAMPLE( flags ) ) |
|
? icvDefaultSplitIdx_R : icvDefaultSplitIdx_C; |
|
userdata = trainData; |
|
} |
|
|
|
/* create root of the tree */ |
|
intnode[0].sampleIdx = sampleIdx; |
|
intnode[0].stump = (CvStumpClassifier*) |
|
((CvCARTTrainParams*) trainParams)->stumpConstructor( trainData, flags, |
|
trainClasses, typeMask, missedMeasurementsMask, compIdx, sampleIdx, weights, |
|
((CvCARTTrainParams*) trainParams)->stumpTrainParams ); |
|
cart->left[0] = cart->right[0] = 0; |
|
|
|
/* build tree */ |
|
listcount = 0; |
|
for( i = 1; i < count; i++ ) |
|
{ |
|
/* split last added node */ |
|
splitIdxCallback( intnode[i-1].stump->compidx, intnode[i-1].stump->threshold, |
|
intnode[i-1].sampleIdx, &lidx, &ridx, userdata ); |
|
|
|
if( intnode[i-1].stump->lerror != 0.0F ) |
|
{ |
|
list[listcount].sampleIdx = lidx; |
|
list[listcount].stump = (CvStumpClassifier*) |
|
((CvCARTTrainParams*) trainParams)->stumpConstructor( trainData, flags, |
|
trainClasses, typeMask, missedMeasurementsMask, compIdx, |
|
list[listcount].sampleIdx, |
|
weights, ((CvCARTTrainParams*) trainParams)->stumpTrainParams ); |
|
list[listcount].errdrop = intnode[i-1].stump->lerror |
|
- (list[listcount].stump->lerror + list[listcount].stump->rerror); |
|
list[listcount].leftflag = 1; |
|
list[listcount].parent = i-1; |
|
listcount++; |
|
} |
|
else |
|
{ |
|
cvReleaseMat( &lidx ); |
|
} |
|
if( intnode[i-1].stump->rerror != 0.0F ) |
|
{ |
|
list[listcount].sampleIdx = ridx; |
|
list[listcount].stump = (CvStumpClassifier*) |
|
((CvCARTTrainParams*) trainParams)->stumpConstructor( trainData, flags, |
|
trainClasses, typeMask, missedMeasurementsMask, compIdx, |
|
list[listcount].sampleIdx, |
|
weights, ((CvCARTTrainParams*) trainParams)->stumpTrainParams ); |
|
list[listcount].errdrop = intnode[i-1].stump->rerror |
|
- (list[listcount].stump->lerror + list[listcount].stump->rerror); |
|
list[listcount].leftflag = 0; |
|
list[listcount].parent = i-1; |
|
listcount++; |
|
} |
|
else |
|
{ |
|
cvReleaseMat( &ridx ); |
|
} |
|
|
|
if( listcount == 0 ) break; |
|
|
|
/* find the best node to be added to the tree */ |
|
idx = 0; |
|
maxerrdrop = list[idx].errdrop; |
|
for( j = 1; j < listcount; j++ ) |
|
{ |
|
if( list[j].errdrop > maxerrdrop ) |
|
{ |
|
idx = j; |
|
maxerrdrop = list[j].errdrop; |
|
} |
|
} |
|
intnode[i] = list[idx]; |
|
if( list[idx].leftflag ) |
|
{ |
|
cart->left[list[idx].parent] = i; |
|
} |
|
else |
|
{ |
|
cart->right[list[idx].parent] = i; |
|
} |
|
if( idx != (listcount - 1) ) |
|
{ |
|
list[idx] = list[listcount - 1]; |
|
} |
|
listcount--; |
|
} |
|
|
|
/* fill <cart> fields */ |
|
j = 0; |
|
cart->count = 0; |
|
for( i = 0; i < count && (intnode[i].stump != NULL); i++ ) |
|
{ |
|
cart->count++; |
|
cart->compidx[i] = intnode[i].stump->compidx; |
|
cart->threshold[i] = intnode[i].stump->threshold; |
|
|
|
/* leaves */ |
|
if( cart->left[i] <= 0 ) |
|
{ |
|
cart->left[i] = -j; |
|
cart->val[j] = intnode[i].stump->left; |
|
j++; |
|
} |
|
if( cart->right[i] <= 0 ) |
|
{ |
|
cart->right[i] = -j; |
|
cart->val[j] = intnode[i].stump->right; |
|
j++; |
|
} |
|
} |
|
|
|
/* CLEAN UP */ |
|
for( i = 0; i < count && (intnode[i].stump != NULL); i++ ) |
|
{ |
|
intnode[i].stump->release( (CvClassifier**) &(intnode[i].stump) ); |
|
if( i != 0 ) |
|
{ |
|
cvReleaseMat( &(intnode[i].sampleIdx) ); |
|
} |
|
} |
|
for( i = 0; i < listcount; i++ ) |
|
{ |
|
list[i].stump->release( (CvClassifier**) &(list[i].stump) ); |
|
cvReleaseMat( &(list[i].sampleIdx) ); |
|
} |
|
|
|
cvFree( &intnode ); |
|
|
|
return (CvClassifier*) cart; |
|
} |
|
|
|
/****************************************************************************************\ |
|
* Boosting * |
|
\****************************************************************************************/ |
|
|
|
typedef struct CvBoostTrainer |
|
{ |
|
CvBoostType type; |
|
int count; /* (idx) ? number_of_indices : number_of_samples */ |
|
int* idx; |
|
float* F; |
|
} CvBoostTrainer; |
|
|
|
/* |
|
* cvBoostStartTraining, cvBoostNextWeakClassifier, cvBoostEndTraining |
|
* |
|
* These functions perform training of 2-class boosting classifier |
|
* using ANY appropriate weak classifier |
|
*/ |
|
|
|
CV_BOOST_IMPL |
|
CvBoostTrainer* icvBoostStartTraining( CvMat* trainClasses, |
|
CvMat* weakTrainVals, |
|
CvMat* /*weights*/, |
|
CvMat* sampleIdx, |
|
CvBoostType type ) |
|
{ |
|
uchar* ydata; |
|
int ystep; |
|
int m; |
|
uchar* traindata; |
|
int trainstep; |
|
int trainnum; |
|
int i; |
|
int idx; |
|
|
|
size_t datasize; |
|
CvBoostTrainer* ptr; |
|
|
|
int idxnum; |
|
int idxstep; |
|
uchar* idxdata; |
|
|
|
assert( trainClasses != NULL ); |
|
assert( CV_MAT_TYPE( trainClasses->type ) == CV_32FC1 ); |
|
assert( weakTrainVals != NULL ); |
|
assert( CV_MAT_TYPE( weakTrainVals->type ) == CV_32FC1 ); |
|
|
|
CV_MAT2VEC( *trainClasses, ydata, ystep, m ); |
|
CV_MAT2VEC( *weakTrainVals, traindata, trainstep, trainnum ); |
|
|
|
assert( m == trainnum ); |
|
|
|
idxnum = 0; |
|
idxstep = 0; |
|
idxdata = NULL; |
|
if( sampleIdx ) |
|
{ |
|
CV_MAT2VEC( *sampleIdx, idxdata, idxstep, idxnum ); |
|
} |
|
|
|
datasize = sizeof( *ptr ) + sizeof( *ptr->idx ) * idxnum; |
|
ptr = (CvBoostTrainer*) cvAlloc( datasize ); |
|
memset( ptr, 0, datasize ); |
|
ptr->F = NULL; |
|
ptr->idx = NULL; |
|
|
|
ptr->count = m; |
|
ptr->type = type; |
|
|
|
if( idxnum > 0 ) |
|
{ |
|
CvScalar s; |
|
|
|
ptr->idx = (int*) (ptr + 1); |
|
ptr->count = idxnum; |
|
for( i = 0; i < ptr->count; i++ ) |
|
{ |
|
cvRawDataToScalar( idxdata + i*idxstep, CV_MAT_TYPE( sampleIdx->type ), &s ); |
|
ptr->idx[i] = (int) s.val[0]; |
|
} |
|
} |
|
for( i = 0; i < ptr->count; i++ ) |
|
{ |
|
idx = (ptr->idx) ? ptr->idx[i] : i; |
|
|
|
*((float*) (traindata + idx * trainstep)) = |
|
2.0F * (*((float*) (ydata + idx * ystep))) - 1.0F; |
|
} |
|
|
|
return ptr; |
|
} |
|
|
|
/* |
|
* |
|
* Discrete AdaBoost functions |
|
* |
|
*/ |
|
CV_BOOST_IMPL |
|
float icvBoostNextWeakClassifierDAB( CvMat* weakEvalVals, |
|
CvMat* trainClasses, |
|
CvMat* /*weakTrainVals*/, |
|
CvMat* weights, |
|
CvBoostTrainer* trainer ) |
|
{ |
|
uchar* evaldata; |
|
int evalstep; |
|
int m; |
|
uchar* ydata; |
|
int ystep; |
|
int ynum; |
|
uchar* wdata; |
|
int wstep; |
|
int wnum; |
|
|
|
float sumw; |
|
float err; |
|
int i; |
|
int idx; |
|
|
|
CV_Assert( weakEvalVals != NULL ); |
|
CV_Assert( CV_MAT_TYPE( weakEvalVals->type ) == CV_32FC1 ); |
|
CV_Assert( trainClasses != NULL ); |
|
CV_Assert( CV_MAT_TYPE( trainClasses->type ) == CV_32FC1 ); |
|
CV_Assert( weights != NULL ); |
|
CV_Assert( CV_MAT_TYPE( weights ->type ) == CV_32FC1 ); |
|
|
|
CV_MAT2VEC( *weakEvalVals, evaldata, evalstep, m ); |
|
CV_MAT2VEC( *trainClasses, ydata, ystep, ynum ); |
|
CV_MAT2VEC( *weights, wdata, wstep, wnum ); |
|
|
|
assert( m == ynum ); |
|
assert( m == wnum ); |
|
|
|
sumw = 0.0F; |
|
err = 0.0F; |
|
for( i = 0; i < trainer->count; i++ ) |
|
{ |
|
idx = (trainer->idx) ? trainer->idx[i] : i; |
|
|
|
sumw += *((float*) (wdata + idx*wstep)); |
|
err += (*((float*) (wdata + idx*wstep))) * |
|
( (*((float*) (evaldata + idx*evalstep))) != |
|
2.0F * (*((float*) (ydata + idx*ystep))) - 1.0F ); |
|
} |
|
err /= sumw; |
|
err = -cvLogRatio( err ); |
|
|
|
for( i = 0; i < trainer->count; i++ ) |
|
{ |
|
idx = (trainer->idx) ? trainer->idx[i] : i; |
|
|
|
*((float*) (wdata + idx*wstep)) *= expf( err * |
|
((*((float*) (evaldata + idx*evalstep))) != |
|
2.0F * (*((float*) (ydata + idx*ystep))) - 1.0F) ); |
|
sumw += *((float*) (wdata + idx*wstep)); |
|
} |
|
for( i = 0; i < trainer->count; i++ ) |
|
{ |
|
idx = (trainer->idx) ? trainer->idx[i] : i; |
|
|
|
*((float*) (wdata + idx * wstep)) /= sumw; |
|
} |
|
|
|
return err; |
|
} |
|
|
|
/* |
|
* |
|
* Real AdaBoost functions |
|
* |
|
*/ |
|
CV_BOOST_IMPL |
|
float icvBoostNextWeakClassifierRAB( CvMat* weakEvalVals, |
|
CvMat* trainClasses, |
|
CvMat* /*weakTrainVals*/, |
|
CvMat* weights, |
|
CvBoostTrainer* trainer ) |
|
{ |
|
uchar* evaldata; |
|
int evalstep; |
|
int m; |
|
uchar* ydata; |
|
int ystep; |
|
int ynum; |
|
uchar* wdata; |
|
int wstep; |
|
int wnum; |
|
|
|
float sumw; |
|
int i, idx; |
|
|
|
CV_Assert( weakEvalVals != NULL ); |
|
CV_Assert( CV_MAT_TYPE( weakEvalVals->type ) == CV_32FC1 ); |
|
CV_Assert( trainClasses != NULL ); |
|
CV_Assert( CV_MAT_TYPE( trainClasses->type ) == CV_32FC1 ); |
|
CV_Assert( weights != NULL ); |
|
CV_Assert( CV_MAT_TYPE( weights ->type ) == CV_32FC1 ); |
|
|
|
CV_MAT2VEC( *weakEvalVals, evaldata, evalstep, m ); |
|
CV_MAT2VEC( *trainClasses, ydata, ystep, ynum ); |
|
CV_MAT2VEC( *weights, wdata, wstep, wnum ); |
|
|
|
CV_Assert( m == ynum ); |
|
CV_Assert( m == wnum ); |
|
|
|
|
|
sumw = 0.0F; |
|
for( i = 0; i < trainer->count; i++ ) |
|
{ |
|
idx = (trainer->idx) ? trainer->idx[i] : i; |
|
|
|
*((float*) (wdata + idx*wstep)) *= expf( (-(*((float*) (ydata + idx*ystep))) + 0.5F) |
|
* cvLogRatio( *((float*) (evaldata + idx*evalstep)) ) ); |
|
sumw += *((float*) (wdata + idx*wstep)); |
|
} |
|
for( i = 0; i < trainer->count; i++ ) |
|
{ |
|
idx = (trainer->idx) ? trainer->idx[i] : i; |
|
|
|
*((float*) (wdata + idx*wstep)) /= sumw; |
|
} |
|
|
|
return 1.0F; |
|
} |
|
|
|
/* |
|
* |
|
* LogitBoost functions |
|
* |
|
*/ |
|
#define CV_LB_PROB_THRESH 0.01F |
|
#define CV_LB_WEIGHT_THRESHOLD 0.0001F |
|
|
|
CV_BOOST_IMPL |
|
void icvResponsesAndWeightsLB( int num, uchar* wdata, int wstep, |
|
uchar* ydata, int ystep, |
|
uchar* fdata, int fstep, |
|
uchar* traindata, int trainstep, |
|
int* indices ) |
|
{ |
|
int i, idx; |
|
float p; |
|
|
|
for( i = 0; i < num; i++ ) |
|
{ |
|
idx = (indices) ? indices[i] : i; |
|
|
|
p = 1.0F / (1.0F + expf( -(*((float*) (fdata + idx*fstep)))) ); |
|
*((float*) (wdata + idx*wstep)) = MAX( p * (1.0F - p), CV_LB_WEIGHT_THRESHOLD ); |
|
if( *((float*) (ydata + idx*ystep)) == 1.0F ) |
|
{ |
|
*((float*) (traindata + idx*trainstep)) = |
|
1.0F / (MAX( p, CV_LB_PROB_THRESH )); |
|
} |
|
else |
|
{ |
|
*((float*) (traindata + idx*trainstep)) = |
|
-1.0F / (MAX( 1.0F - p, CV_LB_PROB_THRESH )); |
|
} |
|
} |
|
} |
|
|
|
CV_BOOST_IMPL |
|
CvBoostTrainer* icvBoostStartTrainingLB( CvMat* trainClasses, |
|
CvMat* weakTrainVals, |
|
CvMat* weights, |
|
CvMat* sampleIdx, |
|
CvBoostType type ) |
|
{ |
|
size_t datasize; |
|
CvBoostTrainer* ptr; |
|
|
|
uchar* ydata; |
|
int ystep; |
|
int m; |
|
uchar* traindata; |
|
int trainstep; |
|
int trainnum; |
|
uchar* wdata; |
|
int wstep; |
|
int wnum; |
|
int i; |
|
|
|
int idxnum; |
|
int idxstep; |
|
uchar* idxdata; |
|
|
|
assert( trainClasses != NULL ); |
|
assert( CV_MAT_TYPE( trainClasses->type ) == CV_32FC1 ); |
|
assert( weakTrainVals != NULL ); |
|
assert( CV_MAT_TYPE( weakTrainVals->type ) == CV_32FC1 ); |
|
assert( weights != NULL ); |
|
assert( CV_MAT_TYPE( weights->type ) == CV_32FC1 ); |
|
|
|
CV_MAT2VEC( *trainClasses, ydata, ystep, m ); |
|
CV_MAT2VEC( *weakTrainVals, traindata, trainstep, trainnum ); |
|
CV_MAT2VEC( *weights, wdata, wstep, wnum ); |
|
|
|
assert( m == trainnum ); |
|
assert( m == wnum ); |
|
|
|
|
|
idxnum = 0; |
|
idxstep = 0; |
|
idxdata = NULL; |
|
if( sampleIdx ) |
|
{ |
|
CV_MAT2VEC( *sampleIdx, idxdata, idxstep, idxnum ); |
|
} |
|
|
|
datasize = sizeof( *ptr ) + sizeof( *ptr->F ) * m + sizeof( *ptr->idx ) * idxnum; |
|
ptr = (CvBoostTrainer*) cvAlloc( datasize ); |
|
memset( ptr, 0, datasize ); |
|
ptr->F = (float*) (ptr + 1); |
|
ptr->idx = NULL; |
|
|
|
ptr->count = m; |
|
ptr->type = type; |
|
|
|
if( idxnum > 0 ) |
|
{ |
|
CvScalar s; |
|
|
|
ptr->idx = (int*) (ptr->F + m); |
|
ptr->count = idxnum; |
|
for( i = 0; i < ptr->count; i++ ) |
|
{ |
|
cvRawDataToScalar( idxdata + i*idxstep, CV_MAT_TYPE( sampleIdx->type ), &s ); |
|
ptr->idx[i] = (int) s.val[0]; |
|
} |
|
} |
|
|
|
for( i = 0; i < m; i++ ) |
|
{ |
|
ptr->F[i] = 0.0F; |
|
} |
|
|
|
icvResponsesAndWeightsLB( ptr->count, wdata, wstep, ydata, ystep, |
|
(uchar*) ptr->F, sizeof( *ptr->F ), |
|
traindata, trainstep, ptr->idx ); |
|
|
|
return ptr; |
|
} |
|
|
|
CV_BOOST_IMPL |
|
float icvBoostNextWeakClassifierLB( CvMat* weakEvalVals, |
|
CvMat* trainClasses, |
|
CvMat* weakTrainVals, |
|
CvMat* weights, |
|
CvBoostTrainer* trainer ) |
|
{ |
|
uchar* evaldata; |
|
int evalstep; |
|
int m; |
|
uchar* ydata; |
|
int ystep; |
|
int ynum; |
|
uchar* traindata; |
|
int trainstep; |
|
int trainnum; |
|
uchar* wdata; |
|
int wstep; |
|
int wnum; |
|
int i, idx; |
|
|
|
assert( weakEvalVals != NULL ); |
|
assert( CV_MAT_TYPE( weakEvalVals->type ) == CV_32FC1 ); |
|
assert( trainClasses != NULL ); |
|
assert( CV_MAT_TYPE( trainClasses->type ) == CV_32FC1 ); |
|
assert( weakTrainVals != NULL ); |
|
assert( CV_MAT_TYPE( weakTrainVals->type ) == CV_32FC1 ); |
|
assert( weights != NULL ); |
|
assert( CV_MAT_TYPE( weights ->type ) == CV_32FC1 ); |
|
|
|
CV_MAT2VEC( *weakEvalVals, evaldata, evalstep, m ); |
|
CV_MAT2VEC( *trainClasses, ydata, ystep, ynum ); |
|
CV_MAT2VEC( *weakTrainVals, traindata, trainstep, trainnum ); |
|
CV_MAT2VEC( *weights, wdata, wstep, wnum ); |
|
|
|
assert( m == ynum ); |
|
assert( m == wnum ); |
|
assert( m == trainnum ); |
|
//assert( m == trainer->count ); |
|
|
|
for( i = 0; i < trainer->count; i++ ) |
|
{ |
|
idx = (trainer->idx) ? trainer->idx[i] : i; |
|
|
|
trainer->F[idx] += *((float*) (evaldata + idx * evalstep)); |
|
} |
|
|
|
icvResponsesAndWeightsLB( trainer->count, wdata, wstep, ydata, ystep, |
|
(uchar*) trainer->F, sizeof( *trainer->F ), |
|
traindata, trainstep, trainer->idx ); |
|
|
|
return 1.0F; |
|
} |
|
|
|
/* |
|
* |
|
* Gentle AdaBoost |
|
* |
|
*/ |
|
CV_BOOST_IMPL |
|
float icvBoostNextWeakClassifierGAB( CvMat* weakEvalVals, |
|
CvMat* trainClasses, |
|
CvMat* /*weakTrainVals*/, |
|
CvMat* weights, |
|
CvBoostTrainer* trainer ) |
|
{ |
|
uchar* evaldata; |
|
int evalstep; |
|
int m; |
|
uchar* ydata; |
|
int ystep; |
|
int ynum; |
|
uchar* wdata; |
|
int wstep; |
|
int wnum; |
|
|
|
int i, idx; |
|
float sumw; |
|
|
|
CV_Assert( weakEvalVals != NULL ); |
|
CV_Assert( CV_MAT_TYPE( weakEvalVals->type ) == CV_32FC1 ); |
|
CV_Assert( trainClasses != NULL ); |
|
CV_Assert( CV_MAT_TYPE( trainClasses->type ) == CV_32FC1 ); |
|
CV_Assert( weights != NULL ); |
|
CV_Assert( CV_MAT_TYPE( weights->type ) == CV_32FC1 ); |
|
|
|
CV_MAT2VEC( *weakEvalVals, evaldata, evalstep, m ); |
|
CV_MAT2VEC( *trainClasses, ydata, ystep, ynum ); |
|
CV_MAT2VEC( *weights, wdata, wstep, wnum ); |
|
|
|
assert( m == ynum ); |
|
assert( m == wnum ); |
|
|
|
sumw = 0.0F; |
|
for( i = 0; i < trainer->count; i++ ) |
|
{ |
|
idx = (trainer->idx) ? trainer->idx[i] : i; |
|
|
|
*((float*) (wdata + idx*wstep)) *= |
|
expf( -(*((float*) (evaldata + idx*evalstep))) |
|
* ( 2.0F * (*((float*) (ydata + idx*ystep))) - 1.0F ) ); |
|
sumw += *((float*) (wdata + idx*wstep)); |
|
} |
|
|
|
for( i = 0; i < trainer->count; i++ ) |
|
{ |
|
idx = (trainer->idx) ? trainer->idx[i] : i; |
|
|
|
*((float*) (wdata + idx*wstep)) /= sumw; |
|
} |
|
|
|
return 1.0F; |
|
} |
|
|
|
typedef CvBoostTrainer* (*CvBoostStartTraining)( CvMat* trainClasses, |
|
CvMat* weakTrainVals, |
|
CvMat* weights, |
|
CvMat* sampleIdx, |
|
CvBoostType type ); |
|
|
|
typedef float (*CvBoostNextWeakClassifier)( CvMat* weakEvalVals, |
|
CvMat* trainClasses, |
|
CvMat* weakTrainVals, |
|
CvMat* weights, |
|
CvBoostTrainer* data ); |
|
|
|
CvBoostStartTraining startTraining[4] = { |
|
icvBoostStartTraining, |
|
icvBoostStartTraining, |
|
icvBoostStartTrainingLB, |
|
icvBoostStartTraining |
|
}; |
|
|
|
CvBoostNextWeakClassifier nextWeakClassifier[4] = { |
|
icvBoostNextWeakClassifierDAB, |
|
icvBoostNextWeakClassifierRAB, |
|
icvBoostNextWeakClassifierLB, |
|
icvBoostNextWeakClassifierGAB |
|
}; |
|
|
|
/* |
|
* |
|
* Dispatchers |
|
* |
|
*/ |
|
CV_BOOST_IMPL |
|
CvBoostTrainer* cvBoostStartTraining( CvMat* trainClasses, |
|
CvMat* weakTrainVals, |
|
CvMat* weights, |
|
CvMat* sampleIdx, |
|
CvBoostType type ) |
|
{ |
|
return startTraining[type]( trainClasses, weakTrainVals, weights, sampleIdx, type ); |
|
} |
|
|
|
CV_BOOST_IMPL |
|
void cvBoostEndTraining( CvBoostTrainer** trainer ) |
|
{ |
|
cvFree( trainer ); |
|
*trainer = NULL; |
|
} |
|
|
|
CV_BOOST_IMPL |
|
float cvBoostNextWeakClassifier( CvMat* weakEvalVals, |
|
CvMat* trainClasses, |
|
CvMat* weakTrainVals, |
|
CvMat* weights, |
|
CvBoostTrainer* trainer ) |
|
{ |
|
return nextWeakClassifier[trainer->type]( weakEvalVals, trainClasses, |
|
weakTrainVals, weights, trainer ); |
|
} |
|
|
|
/****************************************************************************************\ |
|
* Boosted tree models * |
|
\****************************************************************************************/ |
|
|
|
typedef struct CvBtTrainer |
|
{ |
|
/* {{ external */ |
|
CvMat* trainData; |
|
int flags; |
|
|
|
CvMat* trainClasses; |
|
int m; |
|
uchar* ydata; |
|
int ystep; |
|
|
|
CvMat* sampleIdx; |
|
int numsamples; |
|
|
|
float param[2]; |
|
CvBoostType type; |
|
int numclasses; |
|
/* }} external */ |
|
|
|
CvMTStumpTrainParams stumpParams; |
|
CvCARTTrainParams cartParams; |
|
|
|
float* f; /* F_(m-1) */ |
|
CvMat* y; /* yhat */ |
|
CvMat* weights; |
|
CvBoostTrainer* boosttrainer; |
|
} CvBtTrainer; |
|
|
|
/* |
|
* cvBtStart, cvBtNext, cvBtEnd |
|
* |
|
* These functions perform iterative training of |
|
* 2-class (CV_DABCLASS - CV_GABCLASS, CV_L2CLASS), K-class (CV_LKCLASS) classifier |
|
* or fit regression model (CV_LSREG, CV_LADREG, CV_MREG) |
|
* using decision tree as a weak classifier. |
|
*/ |
|
|
|
typedef void (*CvZeroApproxFunc)( float* approx, CvBtTrainer* trainer ); |
|
|
|
/* Mean zero approximation */ |
|
void icvZeroApproxMean( float* approx, CvBtTrainer* trainer ) |
|
{ |
|
int i; |
|
int idx; |
|
|
|
approx[0] = 0.0F; |
|
for( i = 0; i < trainer->numsamples; i++ ) |
|
{ |
|
idx = icvGetIdxAt( trainer->sampleIdx, i ); |
|
approx[0] += *((float*) (trainer->ydata + idx * trainer->ystep)); |
|
} |
|
approx[0] /= (float) trainer->numsamples; |
|
} |
|
|
|
/* |
|
* Median zero approximation |
|
*/ |
|
void icvZeroApproxMed( float* approx, CvBtTrainer* trainer ) |
|
{ |
|
int i; |
|
int idx; |
|
|
|
for( i = 0; i < trainer->numsamples; i++ ) |
|
{ |
|
idx = icvGetIdxAt( trainer->sampleIdx, i ); |
|
trainer->f[i] = *((float*) (trainer->ydata + idx * trainer->ystep)); |
|
} |
|
|
|
icvSort_32f( trainer->f, trainer->numsamples, 0 ); |
|
approx[0] = trainer->f[trainer->numsamples / 2]; |
|
} |
|
|
|
/* |
|
* 0.5 * log( mean(y) / (1 - mean(y)) ) where y in {0, 1} |
|
*/ |
|
void icvZeroApproxLog( float* approx, CvBtTrainer* trainer ) |
|
{ |
|
float y_mean; |
|
|
|
icvZeroApproxMean( &y_mean, trainer ); |
|
approx[0] = 0.5F * cvLogRatio( y_mean ); |
|
} |
|
|
|
/* |
|
* 0 zero approximation |
|
*/ |
|
void icvZeroApprox0( float* approx, CvBtTrainer* trainer ) |
|
{ |
|
int i; |
|
|
|
for( i = 0; i < trainer->numclasses; i++ ) |
|
{ |
|
approx[i] = 0.0F; |
|
} |
|
} |
|
|
|
static CvZeroApproxFunc icvZeroApproxFunc[] = |
|
{ |
|
icvZeroApprox0, /* CV_DABCLASS */ |
|
icvZeroApprox0, /* CV_RABCLASS */ |
|
icvZeroApprox0, /* CV_LBCLASS */ |
|
icvZeroApprox0, /* CV_GABCLASS */ |
|
icvZeroApproxLog, /* CV_L2CLASS */ |
|
icvZeroApprox0, /* CV_LKCLASS */ |
|
icvZeroApproxMean, /* CV_LSREG */ |
|
icvZeroApproxMed, /* CV_LADREG */ |
|
icvZeroApproxMed, /* CV_MREG */ |
|
}; |
|
|
|
CV_BOOST_IMPL |
|
void cvBtNext( CvCARTClassifier** trees, CvBtTrainer* trainer ); |
|
|
|
CV_BOOST_IMPL |
|
CvBtTrainer* cvBtStart( CvCARTClassifier** trees, |
|
CvMat* trainData, |
|
int flags, |
|
CvMat* trainClasses, |
|
CvMat* sampleIdx, |
|
int numsplits, |
|
CvBoostType type, |
|
int numclasses, |
|
float* param ) |
|
{ |
|
CvBtTrainer* ptr = 0; |
|
|
|
CV_FUNCNAME( "cvBtStart" ); |
|
|
|
__BEGIN__; |
|
|
|
size_t data_size; |
|
float* zero_approx; |
|
int m; |
|
int i, j; |
|
|
|
if( trees == NULL ) |
|
{ |
|
CV_ERROR( CV_StsNullPtr, "Invalid trees parameter" ); |
|
} |
|
|
|
if( type < CV_DABCLASS || type > CV_MREG ) |
|
{ |
|
CV_ERROR( CV_StsUnsupportedFormat, "Unsupported type parameter" ); |
|
} |
|
if( type == CV_LKCLASS ) |
|
{ |
|
CV_ASSERT( numclasses >= 2 ); |
|
} |
|
else |
|
{ |
|
numclasses = 1; |
|
} |
|
|
|
m = MAX( trainClasses->rows, trainClasses->cols ); |
|
ptr = NULL; |
|
data_size = sizeof( *ptr ); |
|
if( type > CV_GABCLASS ) |
|
{ |
|
data_size += m * numclasses * sizeof( *(ptr->f) ); |
|
} |
|
CV_CALL( ptr = (CvBtTrainer*) cvAlloc( data_size ) ); |
|
memset( ptr, 0, data_size ); |
|
ptr->f = (float*) (ptr + 1); |
|
|
|
ptr->trainData = trainData; |
|
ptr->flags = flags; |
|
ptr->trainClasses = trainClasses; |
|
CV_MAT2VEC( *trainClasses, ptr->ydata, ptr->ystep, ptr->m ); |
|
|
|
memset( &(ptr->cartParams), 0, sizeof( ptr->cartParams ) ); |
|
memset( &(ptr->stumpParams), 0, sizeof( ptr->stumpParams ) ); |
|
|
|
switch( type ) |
|
{ |
|
case CV_DABCLASS: |
|
ptr->stumpParams.error = CV_MISCLASSIFICATION; |
|
ptr->stumpParams.type = CV_CLASSIFICATION_CLASS; |
|
break; |
|
case CV_RABCLASS: |
|
ptr->stumpParams.error = CV_GINI; |
|
ptr->stumpParams.type = CV_CLASSIFICATION; |
|
break; |
|
default: |
|
ptr->stumpParams.error = CV_SQUARE; |
|
ptr->stumpParams.type = CV_REGRESSION; |
|
} |
|
ptr->cartParams.count = numsplits; |
|
ptr->cartParams.stumpTrainParams = (CvClassifierTrainParams*) &(ptr->stumpParams); |
|
ptr->cartParams.stumpConstructor = cvCreateMTStumpClassifier; |
|
|
|
ptr->param[0] = param[0]; |
|
ptr->param[1] = param[1]; |
|
ptr->type = type; |
|
ptr->numclasses = numclasses; |
|
|
|
CV_CALL( ptr->y = cvCreateMat( 1, m, CV_32FC1 ) ); |
|
ptr->sampleIdx = sampleIdx; |
|
ptr->numsamples = ( sampleIdx == NULL ) ? ptr->m |
|
: MAX( sampleIdx->rows, sampleIdx->cols ); |
|
|
|
ptr->weights = cvCreateMat( 1, m, CV_32FC1 ); |
|
cvSet( ptr->weights, cvScalar( 1.0 ) ); |
|
|
|
if( type <= CV_GABCLASS ) |
|
{ |
|
ptr->boosttrainer = cvBoostStartTraining( ptr->trainClasses, ptr->y, |
|
ptr->weights, NULL, type ); |
|
|
|
CV_CALL( cvBtNext( trees, ptr ) ); |
|
} |
|
else |
|
{ |
|
data_size = sizeof( *zero_approx ) * numclasses; |
|
CV_CALL( zero_approx = (float*) cvAlloc( data_size ) ); |
|
icvZeroApproxFunc[type]( zero_approx, ptr ); |
|
for( i = 0; i < m; i++ ) |
|
{ |
|
for( j = 0; j < numclasses; j++ ) |
|
{ |
|
ptr->f[i * numclasses + j] = zero_approx[j]; |
|
} |
|
} |
|
|
|
CV_CALL( cvBtNext( trees, ptr ) ); |
|
|
|
for( i = 0; i < numclasses; i++ ) |
|
{ |
|
for( j = 0; j <= trees[i]->count; j++ ) |
|
{ |
|
trees[i]->val[j] += zero_approx[i]; |
|
} |
|
} |
|
CV_CALL( cvFree( &zero_approx ) ); |
|
} |
|
|
|
__END__; |
|
|
|
return ptr; |
|
} |
|
|
|
void icvBtNext_LSREG( CvCARTClassifier** trees, CvBtTrainer* trainer ) |
|
{ |
|
int i; |
|
|
|
/* yhat_i = y_i - F_(m-1)(x_i) */ |
|
for( i = 0; i < trainer->m; i++ ) |
|
{ |
|
trainer->y->data.fl[i] = |
|
*((float*) (trainer->ydata + i * trainer->ystep)) - trainer->f[i]; |
|
} |
|
|
|
trees[0] = (CvCARTClassifier*) cvCreateCARTClassifier( trainer->trainData, |
|
trainer->flags, |
|
trainer->y, NULL, NULL, NULL, trainer->sampleIdx, trainer->weights, |
|
(CvClassifierTrainParams*) &trainer->cartParams ); |
|
} |
|
|
|
|
|
void icvBtNext_LADREG( CvCARTClassifier** trees, CvBtTrainer* trainer ) |
|
{ |
|
CvCARTClassifier* ptr; |
|
int i, j; |
|
CvMat sample; |
|
int sample_step; |
|
uchar* sample_data; |
|
int index; |
|
|
|
int data_size; |
|
int* idx; |
|
float* resp; |
|
int respnum; |
|
float val; |
|
|
|
data_size = trainer->m * sizeof( *idx ); |
|
idx = (int*) cvAlloc( data_size ); |
|
data_size = trainer->m * sizeof( *resp ); |
|
resp = (float*) cvAlloc( data_size ); |
|
|
|
/* yhat_i = sign(y_i - F_(m-1)(x_i)) */ |
|
for( i = 0; i < trainer->numsamples; i++ ) |
|
{ |
|
index = icvGetIdxAt( trainer->sampleIdx, i ); |
|
trainer->y->data.fl[index] = (float) |
|
CV_SIGN( *((float*) (trainer->ydata + index * trainer->ystep)) |
|
- trainer->f[index] ); |
|
} |
|
|
|
ptr = (CvCARTClassifier*) cvCreateCARTClassifier( trainer->trainData, trainer->flags, |
|
trainer->y, NULL, NULL, NULL, trainer->sampleIdx, trainer->weights, |
|
(CvClassifierTrainParams*) &trainer->cartParams ); |
|
|
|
CV_GET_SAMPLE( *trainer->trainData, trainer->flags, 0, sample ); |
|
CV_GET_SAMPLE_STEP( *trainer->trainData, trainer->flags, sample_step ); |
|
sample_data = sample.data.ptr; |
|
for( i = 0; i < trainer->numsamples; i++ ) |
|
{ |
|
index = icvGetIdxAt( trainer->sampleIdx, i ); |
|
sample.data.ptr = sample_data + index * sample_step; |
|
idx[index] = (int) cvEvalCARTClassifierIdx( (CvClassifier*) ptr, &sample ); |
|
} |
|
for( j = 0; j <= ptr->count; j++ ) |
|
{ |
|
respnum = 0; |
|
for( i = 0; i < trainer->numsamples; i++ ) |
|
{ |
|
index = icvGetIdxAt( trainer->sampleIdx, i ); |
|
if( idx[index] == j ) |
|
{ |
|
resp[respnum++] = *((float*) (trainer->ydata + index * trainer->ystep)) |
|
- trainer->f[index]; |
|
} |
|
} |
|
if( respnum > 0 ) |
|
{ |
|
icvSort_32f( resp, respnum, 0 ); |
|
val = resp[respnum / 2]; |
|
} |
|
else |
|
{ |
|
val = 0.0F; |
|
} |
|
ptr->val[j] = val; |
|
} |
|
|
|
cvFree( &idx ); |
|
cvFree( &resp ); |
|
|
|
trees[0] = ptr; |
|
} |
|
|
|
|
|
void icvBtNext_MREG( CvCARTClassifier** trees, CvBtTrainer* trainer ) |
|
{ |
|
CvCARTClassifier* ptr; |
|
int i, j; |
|
CvMat sample; |
|
int sample_step; |
|
uchar* sample_data; |
|
|
|
int data_size; |
|
int* idx; |
|
float* resid; |
|
float* resp; |
|
int respnum; |
|
float rhat; |
|
float val; |
|
float delta; |
|
int index; |
|
|
|
data_size = trainer->m * sizeof( *idx ); |
|
idx = (int*) cvAlloc( data_size ); |
|
data_size = trainer->m * sizeof( *resp ); |
|
resp = (float*) cvAlloc( data_size ); |
|
data_size = trainer->m * sizeof( *resid ); |
|
resid = (float*) cvAlloc( data_size ); |
|
|
|
/* resid_i = (y_i - F_(m-1)(x_i)) */ |
|
for( i = 0; i < trainer->numsamples; i++ ) |
|
{ |
|
index = icvGetIdxAt( trainer->sampleIdx, i ); |
|
resid[index] = *((float*) (trainer->ydata + index * trainer->ystep)) |
|
- trainer->f[index]; |
|
/* for delta */ |
|
resp[i] = (float) fabs( resid[index] ); |
|
} |
|
|
|
/* delta = quantile_alpha{abs(resid_i)} */ |
|
icvSort_32f( resp, trainer->numsamples, 0 ); |
|
delta = resp[(int)(trainer->param[1] * (trainer->numsamples - 1))]; |
|
|
|
/* yhat_i */ |
|
for( i = 0; i < trainer->numsamples; i++ ) |
|
{ |
|
index = icvGetIdxAt( trainer->sampleIdx, i ); |
|
trainer->y->data.fl[index] = MIN( delta, ((float) fabs( resid[index] )) ) * |
|
CV_SIGN( resid[index] ); |
|
} |
|
|
|
ptr = (CvCARTClassifier*) cvCreateCARTClassifier( trainer->trainData, trainer->flags, |
|
trainer->y, NULL, NULL, NULL, trainer->sampleIdx, trainer->weights, |
|
(CvClassifierTrainParams*) &trainer->cartParams ); |
|
|
|
CV_GET_SAMPLE( *trainer->trainData, trainer->flags, 0, sample ); |
|
CV_GET_SAMPLE_STEP( *trainer->trainData, trainer->flags, sample_step ); |
|
sample_data = sample.data.ptr; |
|
for( i = 0; i < trainer->numsamples; i++ ) |
|
{ |
|
index = icvGetIdxAt( trainer->sampleIdx, i ); |
|
sample.data.ptr = sample_data + index * sample_step; |
|
idx[index] = (int) cvEvalCARTClassifierIdx( (CvClassifier*) ptr, &sample ); |
|
} |
|
for( j = 0; j <= ptr->count; j++ ) |
|
{ |
|
respnum = 0; |
|
|
|
for( i = 0; i < trainer->numsamples; i++ ) |
|
{ |
|
index = icvGetIdxAt( trainer->sampleIdx, i ); |
|
if( idx[index] == j ) |
|
{ |
|
resp[respnum++] = *((float*) (trainer->ydata + index * trainer->ystep)) |
|
- trainer->f[index]; |
|
} |
|
} |
|
if( respnum > 0 ) |
|
{ |
|
/* rhat = median(y_i - F_(m-1)(x_i)) */ |
|
icvSort_32f( resp, respnum, 0 ); |
|
rhat = resp[respnum / 2]; |
|
|
|
/* val = sum{sign(r_i - rhat_i) * min(delta, abs(r_i - rhat_i)} |
|
* r_i = y_i - F_(m-1)(x_i) |
|
*/ |
|
val = 0.0F; |
|
for( i = 0; i < respnum; i++ ) |
|
{ |
|
val += CV_SIGN( resp[i] - rhat ) |
|
* MIN( delta, (float) fabs( resp[i] - rhat ) ); |
|
} |
|
|
|
val = rhat + val / (float) respnum; |
|
} |
|
else |
|
{ |
|
val = 0.0F; |
|
} |
|
|
|
ptr->val[j] = val; |
|
|
|
} |
|
|
|
cvFree( &resid ); |
|
cvFree( &resp ); |
|
cvFree( &idx ); |
|
|
|
trees[0] = ptr; |
|
} |
|
|
|
//#define CV_VAL_MAX 1e304 |
|
|
|
//#define CV_LOG_VAL_MAX 700.0 |
|
|
|
#define CV_VAL_MAX 1e+8 |
|
|
|
#define CV_LOG_VAL_MAX 18.0 |
|
|
|
void icvBtNext_L2CLASS( CvCARTClassifier** trees, CvBtTrainer* trainer ) |
|
{ |
|
CvCARTClassifier* ptr; |
|
int i, j; |
|
CvMat sample; |
|
int sample_step; |
|
uchar* sample_data; |
|
|
|
int data_size; |
|
int* idx; |
|
int respnum; |
|
float val; |
|
double val_f; |
|
|
|
float sum_weights; |
|
float* weights; |
|
float* sorted_weights; |
|
CvMat* trimmed_idx; |
|
CvMat* sample_idx; |
|
int index; |
|
int trimmed_num; |
|
|
|
data_size = trainer->m * sizeof( *idx ); |
|
idx = (int*) cvAlloc( data_size ); |
|
|
|
data_size = trainer->m * sizeof( *weights ); |
|
weights = (float*) cvAlloc( data_size ); |
|
data_size = trainer->m * sizeof( *sorted_weights ); |
|
sorted_weights = (float*) cvAlloc( data_size ); |
|
|
|
/* yhat_i = (4 * y_i - 2) / ( 1 + exp( (4 * y_i - 2) * F_(m-1)(x_i) ) ). |
|
* y_i in {0, 1} |
|
*/ |
|
sum_weights = 0.0F; |
|
for( i = 0; i < trainer->numsamples; i++ ) |
|
{ |
|
index = icvGetIdxAt( trainer->sampleIdx, i ); |
|
val = 4.0F * (*((float*) (trainer->ydata + index * trainer->ystep))) - 2.0F; |
|
val_f = val * trainer->f[index]; |
|
val_f = ( val_f < CV_LOG_VAL_MAX ) ? exp( val_f ) : CV_LOG_VAL_MAX; |
|
val = (float) ( (double) val / ( 1.0 + val_f ) ); |
|
trainer->y->data.fl[index] = val; |
|
val = (float) fabs( val ); |
|
weights[index] = val * (2.0F - val); |
|
sorted_weights[i] = weights[index]; |
|
sum_weights += sorted_weights[i]; |
|
} |
|
|
|
trimmed_idx = NULL; |
|
sample_idx = trainer->sampleIdx; |
|
trimmed_num = trainer->numsamples; |
|
if( trainer->param[1] < 1.0F ) |
|
{ |
|
/* perform weight trimming */ |
|
|
|
float threshold; |
|
int count; |
|
|
|
icvSort_32f( sorted_weights, trainer->numsamples, 0 ); |
|
|
|
sum_weights *= (1.0F - trainer->param[1]); |
|
|
|
i = -1; |
|
do { sum_weights -= sorted_weights[++i]; } |
|
while( sum_weights > 0.0F && i < (trainer->numsamples - 1) ); |
|
|
|
threshold = sorted_weights[i]; |
|
|
|
while( i > 0 && sorted_weights[i-1] == threshold ) i--; |
|
|
|
if( i > 0 ) |
|
{ |
|
trimmed_num = trainer->numsamples - i; |
|
trimmed_idx = cvCreateMat( 1, trimmed_num, CV_32FC1 ); |
|
count = 0; |
|
for( i = 0; i < trainer->numsamples; i++ ) |
|
{ |
|
index = icvGetIdxAt( trainer->sampleIdx, i ); |
|
if( weights[index] >= threshold ) |
|
{ |
|
CV_MAT_ELEM( *trimmed_idx, float, 0, count ) = (float) index; |
|
count++; |
|
} |
|
} |
|
|
|
assert( count == trimmed_num ); |
|
|
|
sample_idx = trimmed_idx; |
|
|
|
printf( "Used samples %%: %g\n", |
|
(float) trimmed_num / (float) trainer->numsamples * 100.0F ); |
|
} |
|
} |
|
|
|
ptr = (CvCARTClassifier*) cvCreateCARTClassifier( trainer->trainData, trainer->flags, |
|
trainer->y, NULL, NULL, NULL, sample_idx, trainer->weights, |
|
(CvClassifierTrainParams*) &trainer->cartParams ); |
|
|
|
CV_GET_SAMPLE( *trainer->trainData, trainer->flags, 0, sample ); |
|
CV_GET_SAMPLE_STEP( *trainer->trainData, trainer->flags, sample_step ); |
|
sample_data = sample.data.ptr; |
|
for( i = 0; i < trimmed_num; i++ ) |
|
{ |
|
index = icvGetIdxAt( sample_idx, i ); |
|
sample.data.ptr = sample_data + index * sample_step; |
|
idx[index] = (int) cvEvalCARTClassifierIdx( (CvClassifier*) ptr, &sample ); |
|
} |
|
for( j = 0; j <= ptr->count; j++ ) |
|
{ |
|
respnum = 0; |
|
val = 0.0F; |
|
sum_weights = 0.0F; |
|
for( i = 0; i < trimmed_num; i++ ) |
|
{ |
|
index = icvGetIdxAt( sample_idx, i ); |
|
if( idx[index] == j ) |
|
{ |
|
val += trainer->y->data.fl[index]; |
|
sum_weights += weights[index]; |
|
respnum++; |
|
} |
|
} |
|
if( sum_weights > 0.0F ) |
|
{ |
|
val /= sum_weights; |
|
} |
|
else |
|
{ |
|
val = 0.0F; |
|
} |
|
ptr->val[j] = val; |
|
} |
|
|
|
if( trimmed_idx != NULL ) cvReleaseMat( &trimmed_idx ); |
|
cvFree( &sorted_weights ); |
|
cvFree( &weights ); |
|
cvFree( &idx ); |
|
|
|
trees[0] = ptr; |
|
} |
|
|
|
void icvBtNext_LKCLASS( CvCARTClassifier** trees, CvBtTrainer* trainer ) |
|
{ |
|
int i, j, k, kk, num; |
|
CvMat sample; |
|
int sample_step; |
|
uchar* sample_data; |
|
|
|
int data_size; |
|
int* idx; |
|
int respnum; |
|
float val; |
|
|
|
float sum_weights; |
|
float* weights; |
|
float* sorted_weights; |
|
CvMat* trimmed_idx; |
|
CvMat* sample_idx; |
|
int index; |
|
int trimmed_num; |
|
double sum_exp_f; |
|
double exp_f; |
|
double f_k; |
|
|
|
data_size = trainer->m * sizeof( *idx ); |
|
idx = (int*) cvAlloc( data_size ); |
|
data_size = trainer->m * sizeof( *weights ); |
|
weights = (float*) cvAlloc( data_size ); |
|
data_size = trainer->m * sizeof( *sorted_weights ); |
|
sorted_weights = (float*) cvAlloc( data_size ); |
|
trimmed_idx = cvCreateMat( 1, trainer->numsamples, CV_32FC1 ); |
|
|
|
for( k = 0; k < trainer->numclasses; k++ ) |
|
{ |
|
/* yhat_i = y_i - p_k(x_i), y_i in {0, 1} */ |
|
/* p_k(x_i) = exp(f_k(x_i)) / (sum_exp_f(x_i)) */ |
|
sum_weights = 0.0F; |
|
for( i = 0; i < trainer->numsamples; i++ ) |
|
{ |
|
index = icvGetIdxAt( trainer->sampleIdx, i ); |
|
/* p_k(x_i) = 1 / (1 + sum(exp(f_kk(x_i) - f_k(x_i)))), kk != k */ |
|
num = index * trainer->numclasses; |
|
f_k = (double) trainer->f[num + k]; |
|
sum_exp_f = 1.0; |
|
for( kk = 0; kk < trainer->numclasses; kk++ ) |
|
{ |
|
if( kk == k ) continue; |
|
exp_f = (double) trainer->f[num + kk] - f_k; |
|
exp_f = (exp_f < CV_LOG_VAL_MAX) ? exp( exp_f ) : CV_VAL_MAX; |
|
if( exp_f == CV_VAL_MAX || exp_f >= (CV_VAL_MAX - sum_exp_f) ) |
|
{ |
|
sum_exp_f = CV_VAL_MAX; |
|
break; |
|
} |
|
sum_exp_f += exp_f; |
|
} |
|
|
|
val = (float) ( (*((float*) (trainer->ydata + index * trainer->ystep))) |
|
== (float) k ); |
|
val -= (float) ( (sum_exp_f == CV_VAL_MAX) ? 0.0 : ( 1.0 / sum_exp_f ) ); |
|
|
|
assert( val >= -1.0F ); |
|
assert( val <= 1.0F ); |
|
|
|
trainer->y->data.fl[index] = val; |
|
val = (float) fabs( val ); |
|
weights[index] = val * (1.0F - val); |
|
sorted_weights[i] = weights[index]; |
|
sum_weights += sorted_weights[i]; |
|
} |
|
|
|
sample_idx = trainer->sampleIdx; |
|
trimmed_num = trainer->numsamples; |
|
if( trainer->param[1] < 1.0F ) |
|
{ |
|
/* perform weight trimming */ |
|
|
|
float threshold; |
|
int count; |
|
|
|
icvSort_32f( sorted_weights, trainer->numsamples, 0 ); |
|
|
|
sum_weights *= (1.0F - trainer->param[1]); |
|
|
|
i = -1; |
|
do { sum_weights -= sorted_weights[++i]; } |
|
while( sum_weights > 0.0F && i < (trainer->numsamples - 1) ); |
|
|
|
threshold = sorted_weights[i]; |
|
|
|
while( i > 0 && sorted_weights[i-1] == threshold ) i--; |
|
|
|
if( i > 0 ) |
|
{ |
|
trimmed_num = trainer->numsamples - i; |
|
trimmed_idx->cols = trimmed_num; |
|
count = 0; |
|
for( i = 0; i < trainer->numsamples; i++ ) |
|
{ |
|
index = icvGetIdxAt( trainer->sampleIdx, i ); |
|
if( weights[index] >= threshold ) |
|
{ |
|
CV_MAT_ELEM( *trimmed_idx, float, 0, count ) = (float) index; |
|
count++; |
|
} |
|
} |
|
|
|
assert( count == trimmed_num ); |
|
|
|
sample_idx = trimmed_idx; |
|
|
|
printf( "k: %d Used samples %%: %g\n", k, |
|
(float) trimmed_num / (float) trainer->numsamples * 100.0F ); |
|
} |
|
} /* weight trimming */ |
|
|
|
trees[k] = (CvCARTClassifier*) cvCreateCARTClassifier( trainer->trainData, |
|
trainer->flags, trainer->y, NULL, NULL, NULL, sample_idx, trainer->weights, |
|
(CvClassifierTrainParams*) &trainer->cartParams ); |
|
|
|
CV_GET_SAMPLE( *trainer->trainData, trainer->flags, 0, sample ); |
|
CV_GET_SAMPLE_STEP( *trainer->trainData, trainer->flags, sample_step ); |
|
sample_data = sample.data.ptr; |
|
for( i = 0; i < trimmed_num; i++ ) |
|
{ |
|
index = icvGetIdxAt( sample_idx, i ); |
|
sample.data.ptr = sample_data + index * sample_step; |
|
idx[index] = (int) cvEvalCARTClassifierIdx( (CvClassifier*) trees[k], |
|
&sample ); |
|
} |
|
for( j = 0; j <= trees[k]->count; j++ ) |
|
{ |
|
respnum = 0; |
|
val = 0.0F; |
|
sum_weights = 0.0F; |
|
for( i = 0; i < trimmed_num; i++ ) |
|
{ |
|
index = icvGetIdxAt( sample_idx, i ); |
|
if( idx[index] == j ) |
|
{ |
|
val += trainer->y->data.fl[index]; |
|
sum_weights += weights[index]; |
|
respnum++; |
|
} |
|
} |
|
if( sum_weights > 0.0F ) |
|
{ |
|
val = ((float) (trainer->numclasses - 1)) * val / |
|
((float) (trainer->numclasses)) / sum_weights; |
|
} |
|
else |
|
{ |
|
val = 0.0F; |
|
} |
|
trees[k]->val[j] = val; |
|
} |
|
} /* for each class */ |
|
|
|
cvReleaseMat( &trimmed_idx ); |
|
cvFree( &sorted_weights ); |
|
cvFree( &weights ); |
|
cvFree( &idx ); |
|
} |
|
|
|
|
|
void icvBtNext_XXBCLASS( CvCARTClassifier** trees, CvBtTrainer* trainer ) |
|
{ |
|
float alpha; |
|
int i; |
|
CvMat* weak_eval_vals; |
|
CvMat* sample_idx; |
|
int num_samples; |
|
CvMat sample; |
|
uchar* sample_data; |
|
int sample_step; |
|
|
|
weak_eval_vals = cvCreateMat( 1, trainer->m, CV_32FC1 ); |
|
|
|
sample_idx = cvTrimWeights( trainer->weights, trainer->sampleIdx, |
|
trainer->param[1] ); |
|
num_samples = ( sample_idx == NULL ) |
|
? trainer->m : MAX( sample_idx->rows, sample_idx->cols ); |
|
|
|
printf( "Used samples %%: %g\n", |
|
(float) num_samples / (float) trainer->numsamples * 100.0F ); |
|
|
|
trees[0] = (CvCARTClassifier*) cvCreateCARTClassifier( trainer->trainData, |
|
trainer->flags, trainer->y, NULL, NULL, NULL, |
|
sample_idx, trainer->weights, |
|
(CvClassifierTrainParams*) &trainer->cartParams ); |
|
|
|
/* evaluate samples */ |
|
CV_GET_SAMPLE( *trainer->trainData, trainer->flags, 0, sample ); |
|
CV_GET_SAMPLE_STEP( *trainer->trainData, trainer->flags, sample_step ); |
|
sample_data = sample.data.ptr; |
|
|
|
for( i = 0; i < trainer->m; i++ ) |
|
{ |
|
sample.data.ptr = sample_data + i * sample_step; |
|
weak_eval_vals->data.fl[i] = trees[0]->eval( (CvClassifier*) trees[0], &sample ); |
|
} |
|
|
|
alpha = cvBoostNextWeakClassifier( weak_eval_vals, trainer->trainClasses, |
|
trainer->y, trainer->weights, trainer->boosttrainer ); |
|
|
|
/* multiply tree by alpha */ |
|
for( i = 0; i <= trees[0]->count; i++ ) |
|
{ |
|
trees[0]->val[i] *= alpha; |
|
} |
|
if( trainer->type == CV_RABCLASS ) |
|
{ |
|
for( i = 0; i <= trees[0]->count; i++ ) |
|
{ |
|
trees[0]->val[i] = cvLogRatio( trees[0]->val[i] ); |
|
} |
|
} |
|
|
|
if( sample_idx != NULL && sample_idx != trainer->sampleIdx ) |
|
{ |
|
cvReleaseMat( &sample_idx ); |
|
} |
|
cvReleaseMat( &weak_eval_vals ); |
|
} |
|
|
|
typedef void (*CvBtNextFunc)( CvCARTClassifier** trees, CvBtTrainer* trainer ); |
|
|
|
static CvBtNextFunc icvBtNextFunc[] = |
|
{ |
|
icvBtNext_XXBCLASS, |
|
icvBtNext_XXBCLASS, |
|
icvBtNext_XXBCLASS, |
|
icvBtNext_XXBCLASS, |
|
icvBtNext_L2CLASS, |
|
icvBtNext_LKCLASS, |
|
icvBtNext_LSREG, |
|
icvBtNext_LADREG, |
|
icvBtNext_MREG |
|
}; |
|
|
|
CV_BOOST_IMPL |
|
void cvBtNext( CvCARTClassifier** trees, CvBtTrainer* trainer ) |
|
{ |
|
int i, j; |
|
int index; |
|
CvMat sample; |
|
int sample_step; |
|
uchar* sample_data; |
|
|
|
icvBtNextFunc[trainer->type]( trees, trainer ); |
|
|
|
/* shrinkage */ |
|
if( trainer->param[0] != 1.0F ) |
|
{ |
|
for( j = 0; j < trainer->numclasses; j++ ) |
|
{ |
|
for( i = 0; i <= trees[j]->count; i++ ) |
|
{ |
|
trees[j]->val[i] *= trainer->param[0]; |
|
} |
|
} |
|
} |
|
|
|
if( trainer->type > CV_GABCLASS ) |
|
{ |
|
/* update F_(m-1) */ |
|
CV_GET_SAMPLE( *(trainer->trainData), trainer->flags, 0, sample ); |
|
CV_GET_SAMPLE_STEP( *(trainer->trainData), trainer->flags, sample_step ); |
|
sample_data = sample.data.ptr; |
|
for( i = 0; i < trainer->numsamples; i++ ) |
|
{ |
|
index = icvGetIdxAt( trainer->sampleIdx, i ); |
|
sample.data.ptr = sample_data + index * sample_step; |
|
for( j = 0; j < trainer->numclasses; j++ ) |
|
{ |
|
trainer->f[index * trainer->numclasses + j] += |
|
trees[j]->eval( (CvClassifier*) (trees[j]), &sample ); |
|
} |
|
} |
|
} |
|
} |
|
|
|
CV_BOOST_IMPL |
|
void cvBtEnd( CvBtTrainer** trainer ) |
|
{ |
|
CV_FUNCNAME( "cvBtEnd" ); |
|
|
|
__BEGIN__; |
|
|
|
if( trainer == NULL || (*trainer) == NULL ) |
|
{ |
|
CV_ERROR( CV_StsNullPtr, "Invalid trainer parameter" ); |
|
} |
|
|
|
if( (*trainer)->y != NULL ) |
|
{ |
|
CV_CALL( cvReleaseMat( &((*trainer)->y) ) ); |
|
} |
|
if( (*trainer)->weights != NULL ) |
|
{ |
|
CV_CALL( cvReleaseMat( &((*trainer)->weights) ) ); |
|
} |
|
if( (*trainer)->boosttrainer != NULL ) |
|
{ |
|
CV_CALL( cvBoostEndTraining( &((*trainer)->boosttrainer) ) ); |
|
} |
|
CV_CALL( cvFree( trainer ) ); |
|
|
|
__END__; |
|
} |
|
|
|
/****************************************************************************************\ |
|
* Boosted tree model as a classifier * |
|
\****************************************************************************************/ |
|
|
|
CV_BOOST_IMPL |
|
float cvEvalBtClassifier( CvClassifier* classifier, CvMat* sample ) |
|
{ |
|
float val; |
|
|
|
CV_FUNCNAME( "cvEvalBtClassifier" ); |
|
|
|
__BEGIN__; |
|
|
|
int i; |
|
|
|
val = 0.0F; |
|
if( CV_IS_TUNABLE( classifier->flags ) ) |
|
{ |
|
CvSeqReader reader; |
|
CvCARTClassifier* tree; |
|
|
|
CV_CALL( cvStartReadSeq( ((CvBtClassifier*) classifier)->seq, &reader ) ); |
|
for( i = 0; i < ((CvBtClassifier*) classifier)->numiter; i++ ) |
|
{ |
|
CV_READ_SEQ_ELEM( tree, reader ); |
|
val += tree->eval( (CvClassifier*) tree, sample ); |
|
} |
|
} |
|
else |
|
{ |
|
CvCARTClassifier** ptree; |
|
|
|
ptree = ((CvBtClassifier*) classifier)->trees; |
|
for( i = 0; i < ((CvBtClassifier*) classifier)->numiter; i++ ) |
|
{ |
|
val += (*ptree)->eval( (CvClassifier*) (*ptree), sample ); |
|
ptree++; |
|
} |
|
} |
|
|
|
__END__; |
|
|
|
return val; |
|
} |
|
|
|
CV_BOOST_IMPL |
|
float cvEvalBtClassifier2( CvClassifier* classifier, CvMat* sample ) |
|
{ |
|
float val; |
|
|
|
CV_FUNCNAME( "cvEvalBtClassifier2" ); |
|
|
|
__BEGIN__; |
|
|
|
CV_CALL( val = cvEvalBtClassifier( classifier, sample ) ); |
|
|
|
__END__; |
|
|
|
return (float) (val >= 0.0F); |
|
} |
|
|
|
CV_BOOST_IMPL |
|
float cvEvalBtClassifierK( CvClassifier* classifier, CvMat* sample ) |
|
{ |
|
int cls = 0; |
|
|
|
CV_FUNCNAME( "cvEvalBtClassifierK" ); |
|
|
|
__BEGIN__; |
|
|
|
int i, k; |
|
float max_val; |
|
int numclasses; |
|
|
|
float* vals; |
|
size_t data_size; |
|
|
|
numclasses = ((CvBtClassifier*) classifier)->numclasses; |
|
data_size = sizeof( *vals ) * numclasses; |
|
CV_CALL( vals = (float*) cvAlloc( data_size ) ); |
|
memset( vals, 0, data_size ); |
|
|
|
if( CV_IS_TUNABLE( classifier->flags ) ) |
|
{ |
|
CvSeqReader reader; |
|
CvCARTClassifier* tree; |
|
|
|
CV_CALL( cvStartReadSeq( ((CvBtClassifier*) classifier)->seq, &reader ) ); |
|
for( i = 0; i < ((CvBtClassifier*) classifier)->numiter; i++ ) |
|
{ |
|
for( k = 0; k < numclasses; k++ ) |
|
{ |
|
CV_READ_SEQ_ELEM( tree, reader ); |
|
vals[k] += tree->eval( (CvClassifier*) tree, sample ); |
|
} |
|
} |
|
|
|
} |
|
else |
|
{ |
|
CvCARTClassifier** ptree; |
|
|
|
ptree = ((CvBtClassifier*) classifier)->trees; |
|
for( i = 0; i < ((CvBtClassifier*) classifier)->numiter; i++ ) |
|
{ |
|
for( k = 0; k < numclasses; k++ ) |
|
{ |
|
vals[k] += (*ptree)->eval( (CvClassifier*) (*ptree), sample ); |
|
ptree++; |
|
} |
|
} |
|
} |
|
|
|
max_val = vals[cls]; |
|
for( k = 1; k < numclasses; k++ ) |
|
{ |
|
if( vals[k] > max_val ) |
|
{ |
|
max_val = vals[k]; |
|
cls = k; |
|
} |
|
} |
|
|
|
CV_CALL( cvFree( &vals ) ); |
|
|
|
__END__; |
|
|
|
return (float) cls; |
|
} |
|
|
|
typedef float (*CvEvalBtClassifier)( CvClassifier* classifier, CvMat* sample ); |
|
|
|
static CvEvalBtClassifier icvEvalBtClassifier[] = |
|
{ |
|
cvEvalBtClassifier2, |
|
cvEvalBtClassifier2, |
|
cvEvalBtClassifier2, |
|
cvEvalBtClassifier2, |
|
cvEvalBtClassifier2, |
|
cvEvalBtClassifierK, |
|
cvEvalBtClassifier, |
|
cvEvalBtClassifier, |
|
cvEvalBtClassifier |
|
}; |
|
|
|
CV_BOOST_IMPL |
|
int cvSaveBtClassifier( CvClassifier* classifier, const char* filename ) |
|
{ |
|
CV_FUNCNAME( "cvSaveBtClassifier" ); |
|
|
|
__BEGIN__; |
|
|
|
FILE* file; |
|
int i, j; |
|
CvSeqReader reader; |
|
memset(&reader, 0, sizeof(reader)); |
|
CvCARTClassifier* tree; |
|
|
|
CV_ASSERT( classifier ); |
|
CV_ASSERT( filename ); |
|
|
|
if( !icvMkDir( filename ) || (file = fopen( filename, "w" )) == 0 ) |
|
{ |
|
CV_ERROR( CV_StsError, "Unable to create file" ); |
|
} |
|
|
|
if( CV_IS_TUNABLE( classifier->flags ) ) |
|
{ |
|
CV_CALL( cvStartReadSeq( ((CvBtClassifier*) classifier)->seq, &reader ) ); |
|
} |
|
fprintf( file, "%d %d\n%d\n%d\n", (int) ((CvBtClassifier*) classifier)->type, |
|
((CvBtClassifier*) classifier)->numclasses, |
|
((CvBtClassifier*) classifier)->numfeatures, |
|
((CvBtClassifier*) classifier)->numiter ); |
|
|
|
for( i = 0; i < ((CvBtClassifier*) classifier)->numclasses * |
|
((CvBtClassifier*) classifier)->numiter; i++ ) |
|
{ |
|
if( CV_IS_TUNABLE( classifier->flags ) ) |
|
{ |
|
CV_READ_SEQ_ELEM( tree, reader ); |
|
} |
|
else |
|
{ |
|
tree = ((CvBtClassifier*) classifier)->trees[i]; |
|
} |
|
|
|
fprintf( file, "%d\n", tree->count ); |
|
for( j = 0; j < tree->count; j++ ) |
|
{ |
|
fprintf( file, "%d %g %d %d\n", tree->compidx[j], |
|
tree->threshold[j], |
|
tree->left[j], |
|
tree->right[j] ); |
|
} |
|
for( j = 0; j <= tree->count; j++ ) |
|
{ |
|
fprintf( file, "%g ", tree->val[j] ); |
|
} |
|
fprintf( file, "\n" ); |
|
} |
|
|
|
fclose( file ); |
|
|
|
__END__; |
|
|
|
return 1; |
|
} |
|
|
|
|
|
CV_BOOST_IMPL |
|
void cvReleaseBtClassifier( CvClassifier** ptr ) |
|
{ |
|
CV_FUNCNAME( "cvReleaseBtClassifier" ); |
|
|
|
__BEGIN__; |
|
|
|
int i; |
|
|
|
if( ptr == NULL || *ptr == NULL ) |
|
{ |
|
CV_ERROR( CV_StsNullPtr, "" ); |
|
} |
|
if( CV_IS_TUNABLE( (*ptr)->flags ) ) |
|
{ |
|
CvSeqReader reader; |
|
CvCARTClassifier* tree; |
|
|
|
CV_CALL( cvStartReadSeq( ((CvBtClassifier*) *ptr)->seq, &reader ) ); |
|
for( i = 0; i < ((CvBtClassifier*) *ptr)->numclasses * |
|
((CvBtClassifier*) *ptr)->numiter; i++ ) |
|
{ |
|
CV_READ_SEQ_ELEM( tree, reader ); |
|
tree->release( (CvClassifier**) (&tree) ); |
|
} |
|
CV_CALL( cvReleaseMemStorage( &(((CvBtClassifier*) *ptr)->seq->storage) ) ); |
|
} |
|
else |
|
{ |
|
CvCARTClassifier** ptree; |
|
|
|
ptree = ((CvBtClassifier*) *ptr)->trees; |
|
for( i = 0; i < ((CvBtClassifier*) *ptr)->numclasses * |
|
((CvBtClassifier*) *ptr)->numiter; i++ ) |
|
{ |
|
(*ptree)->release( (CvClassifier**) ptree ); |
|
ptree++; |
|
} |
|
} |
|
|
|
CV_CALL( cvFree( ptr ) ); |
|
*ptr = NULL; |
|
|
|
__END__; |
|
} |
|
|
|
void cvTuneBtClassifier( CvClassifier* classifier, CvMat*, int flags, |
|
CvMat*, CvMat* , CvMat*, CvMat*, CvMat* ) |
|
{ |
|
CV_FUNCNAME( "cvTuneBtClassifier" ); |
|
|
|
__BEGIN__; |
|
|
|
size_t data_size; |
|
|
|
if( CV_IS_TUNABLE( flags ) ) |
|
{ |
|
if( !CV_IS_TUNABLE( classifier->flags ) ) |
|
{ |
|
CV_ERROR( CV_StsUnsupportedFormat, |
|
"Classifier does not support tune function" ); |
|
} |
|
else |
|
{ |
|
/* tune classifier */ |
|
CvCARTClassifier** trees; |
|
|
|
printf( "Iteration %d\n", ((CvBtClassifier*) classifier)->numiter + 1 ); |
|
|
|
data_size = sizeof( *trees ) * ((CvBtClassifier*) classifier)->numclasses; |
|
CV_CALL( trees = (CvCARTClassifier**) cvAlloc( data_size ) ); |
|
CV_CALL( cvBtNext( trees, |
|
(CvBtTrainer*) ((CvBtClassifier*) classifier)->trainer ) ); |
|
CV_CALL( cvSeqPushMulti( ((CvBtClassifier*) classifier)->seq, |
|
trees, ((CvBtClassifier*) classifier)->numclasses ) ); |
|
CV_CALL( cvFree( &trees ) ); |
|
((CvBtClassifier*) classifier)->numiter++; |
|
} |
|
} |
|
else |
|
{ |
|
if( CV_IS_TUNABLE( classifier->flags ) ) |
|
{ |
|
/* convert */ |
|
void* ptr; |
|
|
|
assert( ((CvBtClassifier*) classifier)->seq->total == |
|
((CvBtClassifier*) classifier)->numiter * |
|
((CvBtClassifier*) classifier)->numclasses ); |
|
|
|
data_size = sizeof( ((CvBtClassifier*) classifier)->trees[0] ) * |
|
((CvBtClassifier*) classifier)->seq->total; |
|
CV_CALL( ptr = cvAlloc( data_size ) ); |
|
CV_CALL( cvCvtSeqToArray( ((CvBtClassifier*) classifier)->seq, ptr ) ); |
|
CV_CALL( cvReleaseMemStorage( |
|
&(((CvBtClassifier*) classifier)->seq->storage) ) ); |
|
((CvBtClassifier*) classifier)->trees = (CvCARTClassifier**) ptr; |
|
classifier->flags &= ~CV_TUNABLE; |
|
CV_CALL( cvBtEnd( (CvBtTrainer**) |
|
&(((CvBtClassifier*) classifier)->trainer )) ); |
|
((CvBtClassifier*) classifier)->trainer = NULL; |
|
} |
|
} |
|
|
|
__END__; |
|
} |
|
|
|
CvBtClassifier* icvAllocBtClassifier( CvBoostType type, int flags, int numclasses, |
|
int numiter ) |
|
{ |
|
CvBtClassifier* ptr; |
|
size_t data_size; |
|
|
|
assert( numclasses >= 1 ); |
|
assert( numiter >= 0 ); |
|
assert( ( numclasses == 1 ) || (type == CV_LKCLASS) ); |
|
|
|
data_size = sizeof( *ptr ); |
|
ptr = (CvBtClassifier*) cvAlloc( data_size ); |
|
memset( ptr, 0, data_size ); |
|
|
|
if( CV_IS_TUNABLE( flags ) ) |
|
{ |
|
ptr->seq = cvCreateSeq( 0, sizeof( *(ptr->seq) ), sizeof( *(ptr->trees) ), |
|
cvCreateMemStorage() ); |
|
ptr->numiter = 0; |
|
} |
|
else |
|
{ |
|
data_size = numclasses * numiter * sizeof( *(ptr->trees) ); |
|
ptr->trees = (CvCARTClassifier**) cvAlloc( data_size ); |
|
memset( ptr->trees, 0, data_size ); |
|
|
|
ptr->numiter = numiter; |
|
} |
|
|
|
ptr->flags = flags; |
|
ptr->numclasses = numclasses; |
|
ptr->type = type; |
|
|
|
ptr->eval = icvEvalBtClassifier[(int) type]; |
|
ptr->tune = cvTuneBtClassifier; |
|
ptr->save = cvSaveBtClassifier; |
|
ptr->release = cvReleaseBtClassifier; |
|
|
|
return ptr; |
|
} |
|
|
|
CV_BOOST_IMPL |
|
CvClassifier* cvCreateBtClassifier( CvMat* trainData, |
|
int flags, |
|
CvMat* trainClasses, |
|
CvMat* typeMask, |
|
CvMat* missedMeasurementsMask, |
|
CvMat* compIdx, |
|
CvMat* sampleIdx, |
|
CvMat* weights, |
|
CvClassifierTrainParams* trainParams ) |
|
{ |
|
CvBtClassifier* ptr = 0; |
|
|
|
CV_FUNCNAME( "cvCreateBtClassifier" ); |
|
|
|
__BEGIN__; |
|
CvBoostType type; |
|
int num_classes; |
|
int num_iter; |
|
int i; |
|
CvCARTClassifier** trees; |
|
size_t data_size; |
|
|
|
CV_ASSERT( trainData != NULL ); |
|
CV_ASSERT( trainClasses != NULL ); |
|
CV_ASSERT( typeMask == NULL ); |
|
CV_ASSERT( missedMeasurementsMask == NULL ); |
|
CV_ASSERT( compIdx == NULL ); |
|
CV_ASSERT( weights == NULL ); |
|
CV_ASSERT( trainParams != NULL ); |
|
|
|
type = ((CvBtClassifierTrainParams*) trainParams)->type; |
|
|
|
if( type >= CV_DABCLASS && type <= CV_GABCLASS && sampleIdx ) |
|
{ |
|
CV_ERROR( CV_StsBadArg, "Sample indices are not supported for this type" ); |
|
} |
|
|
|
if( type == CV_LKCLASS ) |
|
{ |
|
double min_val; |
|
double max_val; |
|
|
|
cvMinMaxLoc( trainClasses, &min_val, &max_val ); |
|
num_classes = (int) (max_val + 1.0); |
|
|
|
CV_ASSERT( num_classes >= 2 ); |
|
} |
|
else |
|
{ |
|
num_classes = 1; |
|
} |
|
num_iter = ((CvBtClassifierTrainParams*) trainParams)->numiter; |
|
|
|
CV_ASSERT( num_iter > 0 ); |
|
|
|
ptr = icvAllocBtClassifier( type, CV_TUNABLE | flags, num_classes, num_iter ); |
|
ptr->numfeatures = (CV_IS_ROW_SAMPLE( flags )) ? trainData->cols : trainData->rows; |
|
|
|
i = 0; |
|
|
|
printf( "Iteration %d\n", 1 ); |
|
|
|
data_size = sizeof( *trees ) * ptr->numclasses; |
|
CV_CALL( trees = (CvCARTClassifier**) cvAlloc( data_size ) ); |
|
|
|
CV_CALL( ptr->trainer = cvBtStart( trees, trainData, flags, trainClasses, sampleIdx, |
|
((CvBtClassifierTrainParams*) trainParams)->numsplits, type, num_classes, |
|
&(((CvBtClassifierTrainParams*) trainParams)->param[0]) ) ); |
|
|
|
CV_CALL( cvSeqPushMulti( ptr->seq, trees, ptr->numclasses ) ); |
|
CV_CALL( cvFree( &trees ) ); |
|
ptr->numiter++; |
|
|
|
for( i = 1; i < num_iter; i++ ) |
|
{ |
|
ptr->tune( (CvClassifier*) ptr, NULL, CV_TUNABLE, NULL, NULL, NULL, NULL, NULL ); |
|
} |
|
if( !CV_IS_TUNABLE( flags ) ) |
|
{ |
|
/* convert */ |
|
ptr->tune( (CvClassifier*) ptr, NULL, 0, NULL, NULL, NULL, NULL, NULL ); |
|
} |
|
|
|
__END__; |
|
|
|
return (CvClassifier*) ptr; |
|
} |
|
|
|
CV_BOOST_IMPL |
|
CvClassifier* cvCreateBtClassifierFromFile( const char* filename ) |
|
{ |
|
CvBtClassifier* ptr = 0; |
|
|
|
CV_FUNCNAME( "cvCreateBtClassifierFromFile" ); |
|
|
|
__BEGIN__; |
|
|
|
FILE* file; |
|
int i, j; |
|
int data_size; |
|
int num_classifiers; |
|
int num_features; |
|
int num_classes; |
|
int type; |
|
|
|
CV_ASSERT( filename != NULL ); |
|
|
|
ptr = NULL; |
|
file = fopen( filename, "r" ); |
|
if( !file ) |
|
{ |
|
CV_ERROR( CV_StsError, "Unable to open file" ); |
|
} |
|
|
|
fscanf( file, "%d %d %d %d", &type, &num_classes, &num_features, &num_classifiers ); |
|
|
|
CV_ASSERT( type >= (int) CV_DABCLASS && type <= (int) CV_MREG ); |
|
CV_ASSERT( num_features > 0 ); |
|
CV_ASSERT( num_classifiers > 0 ); |
|
|
|
if( (CvBoostType) type != CV_LKCLASS ) |
|
{ |
|
num_classes = 1; |
|
} |
|
ptr = icvAllocBtClassifier( (CvBoostType) type, 0, num_classes, num_classifiers ); |
|
ptr->numfeatures = num_features; |
|
|
|
for( i = 0; i < num_classes * num_classifiers; i++ ) |
|
{ |
|
int count; |
|
CvCARTClassifier* tree; |
|
|
|
fscanf( file, "%d", &count ); |
|
|
|
data_size = sizeof( *tree ) |
|
+ count * ( sizeof( *(tree->compidx) ) + sizeof( *(tree->threshold) ) + |
|
sizeof( *(tree->right) ) + sizeof( *(tree->left) ) ) |
|
+ (count + 1) * ( sizeof( *(tree->val) ) ); |
|
CV_CALL( tree = (CvCARTClassifier*) cvAlloc( data_size ) ); |
|
memset( tree, 0, data_size ); |
|
tree->eval = cvEvalCARTClassifier; |
|
tree->tune = NULL; |
|
tree->save = NULL; |
|
tree->release = cvReleaseCARTClassifier; |
|
tree->compidx = (int*) ( tree + 1 ); |
|
tree->threshold = (float*) ( tree->compidx + count ); |
|
tree->left = (int*) ( tree->threshold + count ); |
|
tree->right = (int*) ( tree->left + count ); |
|
tree->val = (float*) ( tree->right + count ); |
|
|
|
tree->count = count; |
|
for( j = 0; j < tree->count; j++ ) |
|
{ |
|
fscanf( file, "%d %g %d %d", &(tree->compidx[j]), |
|
&(tree->threshold[j]), |
|
&(tree->left[j]), |
|
&(tree->right[j]) ); |
|
} |
|
for( j = 0; j <= tree->count; j++ ) |
|
{ |
|
fscanf( file, "%g", &(tree->val[j]) ); |
|
} |
|
ptr->trees[i] = tree; |
|
} |
|
|
|
fclose( file ); |
|
|
|
__END__; |
|
|
|
return (CvClassifier*) ptr; |
|
} |
|
|
|
/****************************************************************************************\ |
|
* Utility functions * |
|
\****************************************************************************************/ |
|
|
|
CV_BOOST_IMPL |
|
CvMat* cvTrimWeights( CvMat* weights, CvMat* idx, float factor ) |
|
{ |
|
CvMat* ptr = 0; |
|
|
|
CV_FUNCNAME( "cvTrimWeights" ); |
|
__BEGIN__; |
|
int i, index, num; |
|
float sum_weights; |
|
uchar* wdata; |
|
size_t wstep; |
|
int wnum; |
|
float threshold; |
|
int count; |
|
float* sorted_weights; |
|
|
|
CV_ASSERT( CV_MAT_TYPE( weights->type ) == CV_32FC1 ); |
|
|
|
ptr = idx; |
|
sorted_weights = NULL; |
|
|
|
if( factor > 0.0F && factor < 1.0F ) |
|
{ |
|
size_t data_size; |
|
|
|
CV_MAT2VEC( *weights, wdata, wstep, wnum ); |
|
num = ( idx == NULL ) ? wnum : MAX( idx->rows, idx->cols ); |
|
|
|
data_size = num * sizeof( *sorted_weights ); |
|
sorted_weights = (float*) cvAlloc( data_size ); |
|
memset( sorted_weights, 0, data_size ); |
|
|
|
sum_weights = 0.0F; |
|
for( i = 0; i < num; i++ ) |
|
{ |
|
index = icvGetIdxAt( idx, i ); |
|
sorted_weights[i] = *((float*) (wdata + index * wstep)); |
|
sum_weights += sorted_weights[i]; |
|
} |
|
|
|
icvSort_32f( sorted_weights, num, 0 ); |
|
|
|
sum_weights *= (1.0F - factor); |
|
|
|
i = -1; |
|
do { sum_weights -= sorted_weights[++i]; } |
|
while( sum_weights > 0.0F && i < (num - 1) ); |
|
|
|
threshold = sorted_weights[i]; |
|
|
|
while( i > 0 && sorted_weights[i-1] == threshold ) i--; |
|
|
|
if( i > 0 || ( idx != NULL && CV_MAT_TYPE( idx->type ) != CV_32FC1 ) ) |
|
{ |
|
CV_CALL( ptr = cvCreateMat( 1, num - i, CV_32FC1 ) ); |
|
count = 0; |
|
for( i = 0; i < num; i++ ) |
|
{ |
|
index = icvGetIdxAt( idx, i ); |
|
if( *((float*) (wdata + index * wstep)) >= threshold ) |
|
{ |
|
CV_MAT_ELEM( *ptr, float, 0, count ) = (float) index; |
|
count++; |
|
} |
|
} |
|
|
|
assert( count == ptr->cols ); |
|
} |
|
cvFree( &sorted_weights ); |
|
} |
|
|
|
__END__; |
|
|
|
return ptr; |
|
} |
|
|
|
|
|
CV_BOOST_IMPL |
|
void cvReadTrainData( const char* filename, int flags, |
|
CvMat** trainData, |
|
CvMat** trainClasses ) |
|
{ |
|
|
|
CV_FUNCNAME( "cvReadTrainData" ); |
|
|
|
__BEGIN__; |
|
|
|
FILE* file; |
|
int m, n; |
|
int i, j; |
|
float val; |
|
|
|
if( filename == NULL ) |
|
{ |
|
CV_ERROR( CV_StsNullPtr, "filename must be specified" ); |
|
} |
|
if( trainData == NULL ) |
|
{ |
|
CV_ERROR( CV_StsNullPtr, "trainData must be not NULL" ); |
|
} |
|
if( trainClasses == NULL ) |
|
{ |
|
CV_ERROR( CV_StsNullPtr, "trainClasses must be not NULL" ); |
|
} |
|
|
|
*trainData = NULL; |
|
*trainClasses = NULL; |
|
file = fopen( filename, "r" ); |
|
if( !file ) |
|
{ |
|
CV_ERROR( CV_StsError, "Unable to open file" ); |
|
} |
|
|
|
fscanf( file, "%d %d", &m, &n ); |
|
|
|
if( CV_IS_ROW_SAMPLE( flags ) ) |
|
{ |
|
CV_CALL( *trainData = cvCreateMat( m, n, CV_32FC1 ) ); |
|
} |
|
else |
|
{ |
|
CV_CALL( *trainData = cvCreateMat( n, m, CV_32FC1 ) ); |
|
} |
|
|
|
CV_CALL( *trainClasses = cvCreateMat( 1, m, CV_32FC1 ) ); |
|
|
|
for( i = 0; i < m; i++ ) |
|
{ |
|
for( j = 0; j < n; j++ ) |
|
{ |
|
fscanf( file, "%f", &val ); |
|
if( CV_IS_ROW_SAMPLE( flags ) ) |
|
{ |
|
CV_MAT_ELEM( **trainData, float, i, j ) = val; |
|
} |
|
else |
|
{ |
|
CV_MAT_ELEM( **trainData, float, j, i ) = val; |
|
} |
|
} |
|
fscanf( file, "%f", &val ); |
|
CV_MAT_ELEM( **trainClasses, float, 0, i ) = val; |
|
} |
|
|
|
fclose( file ); |
|
|
|
__END__; |
|
|
|
} |
|
|
|
CV_BOOST_IMPL |
|
void cvWriteTrainData( const char* filename, int flags, |
|
CvMat* trainData, CvMat* trainClasses, CvMat* sampleIdx ) |
|
{ |
|
CV_FUNCNAME( "cvWriteTrainData" ); |
|
|
|
__BEGIN__; |
|
|
|
FILE* file; |
|
int m, n; |
|
int i, j; |
|
int clsrow; |
|
int count; |
|
int idx; |
|
CvScalar sc; |
|
|
|
if( filename == NULL ) |
|
{ |
|
CV_ERROR( CV_StsNullPtr, "filename must be specified" ); |
|
} |
|
if( trainData == NULL || CV_MAT_TYPE( trainData->type ) != CV_32FC1 ) |
|
{ |
|
CV_ERROR( CV_StsUnsupportedFormat, "Invalid trainData" ); |
|
} |
|
if( CV_IS_ROW_SAMPLE( flags ) ) |
|
{ |
|
m = trainData->rows; |
|
n = trainData->cols; |
|
} |
|
else |
|
{ |
|
n = trainData->rows; |
|
m = trainData->cols; |
|
} |
|
if( trainClasses == NULL || CV_MAT_TYPE( trainClasses->type ) != CV_32FC1 || |
|
MIN( trainClasses->rows, trainClasses->cols ) != 1 ) |
|
{ |
|
CV_ERROR( CV_StsUnsupportedFormat, "Invalid trainClasses" ); |
|
} |
|
clsrow = (trainClasses->rows == 1); |
|
if( m != ( (clsrow) ? trainClasses->cols : trainClasses->rows ) ) |
|
{ |
|
CV_ERROR( CV_StsUnmatchedSizes, "Incorrect trainData and trainClasses sizes" ); |
|
} |
|
|
|
if( sampleIdx != NULL ) |
|
{ |
|
count = (sampleIdx->rows == 1) ? sampleIdx->cols : sampleIdx->rows; |
|
} |
|
else |
|
{ |
|
count = m; |
|
} |
|
|
|
|
|
file = fopen( filename, "w" ); |
|
if( !file ) |
|
{ |
|
CV_ERROR( CV_StsError, "Unable to create file" ); |
|
} |
|
|
|
fprintf( file, "%d %d\n", count, n ); |
|
|
|
for( i = 0; i < count; i++ ) |
|
{ |
|
if( sampleIdx ) |
|
{ |
|
if( sampleIdx->rows == 1 ) |
|
{ |
|
sc = cvGet2D( sampleIdx, 0, i ); |
|
} |
|
else |
|
{ |
|
sc = cvGet2D( sampleIdx, i, 0 ); |
|
} |
|
idx = (int) sc.val[0]; |
|
} |
|
else |
|
{ |
|
idx = i; |
|
} |
|
for( j = 0; j < n; j++ ) |
|
{ |
|
fprintf( file, "%g ", ( (CV_IS_ROW_SAMPLE( flags )) |
|
? CV_MAT_ELEM( *trainData, float, idx, j ) |
|
: CV_MAT_ELEM( *trainData, float, j, idx ) ) ); |
|
} |
|
fprintf( file, "%g\n", ( (clsrow) |
|
? CV_MAT_ELEM( *trainClasses, float, 0, idx ) |
|
: CV_MAT_ELEM( *trainClasses, float, idx, 0 ) ) ); |
|
} |
|
|
|
fclose( file ); |
|
|
|
__END__; |
|
} |
|
|
|
|
|
#define ICV_RAND_SHUFFLE( suffix, type ) \ |
|
void icvRandShuffle_##suffix( uchar* data, size_t step, int num ) \ |
|
{ \ |
|
time_t seed; \ |
|
type tmp; \ |
|
int i; \ |
|
float rn; \ |
|
\ |
|
time( &seed ); \ |
|
CvRNG state = cvRNG((int)seed); \ |
|
\ |
|
for( i = 0; i < (num-1); i++ ) \ |
|
{ \ |
|
rn = ((float) cvRandInt( &state )) / (1.0F + UINT_MAX); \ |
|
CV_SWAP( *((type*)(data + i * step)), \ |
|
*((type*)(data + ( i + (int)( rn * (num - i ) ) )* step)), \ |
|
tmp ); \ |
|
} \ |
|
} |
|
|
|
ICV_RAND_SHUFFLE( 8U, uchar ) |
|
|
|
ICV_RAND_SHUFFLE( 16S, short ) |
|
|
|
ICV_RAND_SHUFFLE( 32S, int ) |
|
|
|
ICV_RAND_SHUFFLE( 32F, float ) |
|
|
|
CV_BOOST_IMPL |
|
void cvRandShuffleVec( CvMat* mat ) |
|
{ |
|
CV_FUNCNAME( "cvRandShuffle" ); |
|
|
|
__BEGIN__; |
|
|
|
uchar* data; |
|
size_t step; |
|
int num; |
|
|
|
if( (mat == NULL) || !CV_IS_MAT( mat ) || MIN( mat->rows, mat->cols ) != 1 ) |
|
{ |
|
CV_ERROR( CV_StsUnsupportedFormat, "" ); |
|
} |
|
|
|
CV_MAT2VEC( *mat, data, step, num ); |
|
switch( CV_MAT_TYPE( mat->type ) ) |
|
{ |
|
case CV_8UC1: |
|
icvRandShuffle_8U( data, step, num); |
|
break; |
|
case CV_16SC1: |
|
icvRandShuffle_16S( data, step, num); |
|
break; |
|
case CV_32SC1: |
|
icvRandShuffle_32S( data, step, num); |
|
break; |
|
case CV_32FC1: |
|
icvRandShuffle_32F( data, step, num); |
|
break; |
|
default: |
|
CV_ERROR( CV_StsUnsupportedFormat, "" ); |
|
} |
|
|
|
__END__; |
|
} |
|
|
|
/* End of file. */
|
|
|