Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
377 lines
13 KiB
377 lines
13 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved. |
|
// Copyright (C) 2017, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "../precomp.hpp" |
|
#include "layers_common.hpp" |
|
#include "../op_cuda.hpp" |
|
#include "../op_halide.hpp" |
|
#include "../op_inf_engine.hpp" |
|
#include "../ie_ngraph.hpp" |
|
#include "../op_webnn.hpp" |
|
#include "../op_cann.hpp" |
|
|
|
#include <algorithm> |
|
#include <stdlib.h> |
|
#include <opencv2/core/utils/logger.hpp> |
|
#include "cpu_kernels/softmax.hpp" |
|
using std::max; |
|
|
|
#ifdef HAVE_OPENCL |
|
#include "opencl_kernels_dnn.hpp" |
|
using namespace cv::dnn::ocl4dnn; |
|
#endif |
|
|
|
#ifdef HAVE_CUDA |
|
#include "../cuda4dnn/primitives/softmax.hpp" |
|
using namespace cv::dnn::cuda4dnn; |
|
#endif |
|
|
|
namespace cv |
|
{ |
|
namespace dnn |
|
{ |
|
|
|
class SoftMaxLayerImpl CV_FINAL : public SoftmaxLayer |
|
{ |
|
public: |
|
|
|
SoftMaxLayerImpl(const LayerParams& params) |
|
{ |
|
axisRaw = params.get<int>("axis", 1); |
|
logSoftMax = params.get<bool>("log_softmax", false); |
|
setParamsFrom(params); |
|
} |
|
|
|
#ifdef HAVE_OPENCL |
|
Ptr<OCL4DNNSoftmax<float> > softmaxOp; |
|
#endif |
|
|
|
bool getMemoryShapes(const std::vector<MatShape> &inputs, |
|
const int requiredOutputs, |
|
std::vector<MatShape> &outputs, |
|
std::vector<MatShape> &internals) const CV_OVERRIDE |
|
{ |
|
bool inplace = Layer::getMemoryShapes(inputs, requiredOutputs, outputs, internals); |
|
MatShape shape = inputs[0]; |
|
int cAxis = normalize_axis(axisRaw, shape.size()); |
|
shape[cAxis] = 1; |
|
internals.assign(1, shape); |
|
return inplace; |
|
} |
|
|
|
virtual bool supportBackend(int backendId) CV_OVERRIDE |
|
{ |
|
#ifdef HAVE_INF_ENGINE |
|
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) |
|
return true; |
|
#endif |
|
#ifdef HAVE_WEBNN |
|
if (backendId == DNN_BACKEND_WEBNN) { |
|
// TODO: support logSoftMax |
|
if (logSoftMax) |
|
{ |
|
CV_LOG_WARNING(NULL, "logSoftMax is not supported by WebNN backend.") |
|
} |
|
return !logSoftMax; |
|
} |
|
#endif |
|
return backendId == DNN_BACKEND_OPENCV || |
|
backendId == DNN_BACKEND_CUDA || |
|
(backendId == DNN_BACKEND_HALIDE && haveHalide() && axisRaw == 1) || |
|
backendId == DNN_BACKEND_CANN; |
|
} |
|
|
|
#ifdef HAVE_OPENCL |
|
virtual void finalize(const std::vector<Mat*> &inputs, std::vector<Mat> &outputs) CV_OVERRIDE |
|
{ |
|
softmaxOp.release(); |
|
} |
|
|
|
bool forward_ocl(InputArrayOfArrays inputs_, OutputArrayOfArrays outputs_, OutputArrayOfArrays internals_) |
|
{ |
|
std::vector<UMat> inputs; |
|
std::vector<UMat> outputs; |
|
std::vector<UMat> internals; |
|
|
|
bool use_half = (inputs_.depth() == CV_16S); |
|
inputs_.getUMatVector(inputs); |
|
outputs_.getUMatVector(outputs); |
|
internals_.getUMatVector(internals); |
|
|
|
UMat& src = inputs[0]; |
|
UMat& dstMat = outputs[0]; |
|
int axis = normalize_axis(axisRaw, src.dims); |
|
|
|
if (softmaxOp.empty()) |
|
{ |
|
OCL4DNNSoftmaxConfig config; |
|
config.in_shape = shape(inputs[0]); |
|
config.axis = axis; |
|
config.channels = inputs[0].size[axis]; |
|
config.logsoftmax = logSoftMax; |
|
config.use_half = use_half; |
|
|
|
softmaxOp = Ptr<OCL4DNNSoftmax<float> >(new OCL4DNNSoftmax<float>(config)); |
|
} |
|
|
|
if (softmaxOp->Forward(src, dstMat)) |
|
return true; |
|
|
|
UMat& bufMat = internals[0]; |
|
MatShape s = shape(src); |
|
size_t outerSize = total(s, 0, axis); |
|
size_t channels = src.size[axis]; |
|
size_t innerSize = total(s, axis + 1); |
|
|
|
String buildOpts = format("-DT=%s", use_half ? "half" : "float"); |
|
ocl::Kernel kmax, ksub, ksum, kdiv; |
|
|
|
if (!kmax.create("kernel_channel_max", ocl::dnn::softmax_oclsrc, buildOpts)) |
|
return false; |
|
|
|
if (!ksub.create("kernel_channel_subtract", ocl::dnn::softmax_oclsrc, buildOpts)) |
|
return false; |
|
|
|
if (!ksum.create("kernel_channel_sum", ocl::dnn::softmax_oclsrc, buildOpts)) |
|
return false; |
|
|
|
if (logSoftMax) buildOpts += " -DLOG_SOFTMAX "; |
|
if (!kdiv.create("kernel_channel_div", ocl::dnn::softmax_oclsrc, buildOpts)) |
|
return false; |
|
|
|
size_t bufSize = internals[0].total(); |
|
size_t totalSize = src.total(); |
|
|
|
size_t internal_globalSize[1] = { bufSize }; |
|
size_t total_globalSize[1] = { totalSize }; |
|
|
|
kmax.args((int)outerSize, (int)channels, (int)innerSize, |
|
ocl::KernelArg::PtrReadOnly(src), ocl::KernelArg::PtrReadWrite(bufMat)); |
|
if (!kmax.run(1, internal_globalSize, NULL, false)) |
|
return false; |
|
|
|
ksub.args((int)totalSize, (int)outerSize, (int)channels, (int)innerSize, |
|
ocl::KernelArg::PtrReadOnly(bufMat), |
|
ocl::KernelArg::PtrReadOnly(src), ocl::KernelArg::PtrWriteOnly(dstMat)); |
|
if (!ksub.run(1, total_globalSize, NULL, false)) |
|
return false; |
|
|
|
ksum.args((int)outerSize, (int)channels, (int)innerSize, |
|
ocl::KernelArg::PtrReadOnly(dstMat), ocl::KernelArg::PtrReadWrite(bufMat)); |
|
if (!ksum.run(1, internal_globalSize, NULL, false)) |
|
return false; |
|
|
|
kdiv.args((int)totalSize, (int)outerSize, (int)channels, (int)innerSize, |
|
ocl::KernelArg::PtrReadOnly(bufMat), ocl::KernelArg::PtrReadWrite(dstMat)); |
|
if (!kdiv.run(1, total_globalSize, NULL, false)) |
|
return false; |
|
|
|
return true; |
|
} |
|
#endif |
|
|
|
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE |
|
{ |
|
CV_TRACE_FUNCTION(); |
|
CV_TRACE_ARG_VALUE(name, "name", name.c_str()); |
|
|
|
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget), |
|
forward_ocl(inputs_arr, outputs_arr, internals_arr)) |
|
|
|
if (inputs_arr.depth() == CV_16S) |
|
{ |
|
forward_fallback(inputs_arr, outputs_arr, internals_arr); |
|
return; |
|
} |
|
|
|
std::vector<Mat> inputs, outputs, internals; |
|
inputs_arr.getMatVector(inputs); |
|
outputs_arr.getMatVector(outputs); |
|
|
|
const Mat &src = inputs[0]; |
|
Mat &dst = outputs[0]; |
|
int axis = normalize_axis(axisRaw, src.dims); |
|
|
|
if(logSoftMax) |
|
logSoftmax(dst, src, axis); |
|
else |
|
softmax(dst, src, axis); |
|
} |
|
|
|
#ifdef HAVE_CUDA |
|
Ptr<BackendNode> initCUDA( |
|
void *context_, |
|
const std::vector<Ptr<BackendWrapper>>& inputs, |
|
const std::vector<Ptr<BackendWrapper>>& outputs |
|
) override |
|
{ |
|
auto context = reinterpret_cast<csl::CSLContext*>(context_); |
|
|
|
auto input_wrapper = inputs[0].dynamicCast<CUDABackendWrapper>(); |
|
auto channel_axis = normalize_axis(axisRaw, input_wrapper->getRank()); |
|
return make_cuda_node<cuda4dnn::SoftmaxOp>(preferableTarget, std::move(context->cudnn_handle), channel_axis, logSoftMax); |
|
} |
|
#endif |
|
|
|
virtual Ptr<BackendNode> initHalide(const std::vector<Ptr<BackendWrapper> > &inputs) CV_OVERRIDE |
|
{ |
|
#ifdef HAVE_HALIDE |
|
Halide::Buffer<float> inputBuffer = halideBuffer(inputs[0]); |
|
int inW, inH, inC, inN; |
|
getCanonicalSize(inputBuffer, &inW, &inH, &inC, &inN); |
|
|
|
if (inW != 1 || inH != 1) |
|
CV_Error(cv::Error::StsNotImplemented, |
|
"Halide backend for SoftMax with spatial size " |
|
"more than 1x1 is not implemented"); |
|
|
|
Halide::Var x("x"), y("y"), c("c"), n("n"); |
|
Halide::Func top = (name.empty() ? Halide::Func() : Halide::Func(name)); |
|
|
|
Halide::Func expInput("expInput"); |
|
Halide::RDom r(0, inW, 0, inH, 0, inC); |
|
expInput(x, y, c, n) = exp(inputBuffer(x, y, c, n)); |
|
Halide::Expr globalSum = sum(expInput(r.x, r.y, r.z, n)); |
|
top(x, y, c, n) = expInput(x, y, c, n) / globalSum; |
|
return Ptr<BackendNode>(new HalideBackendNode(top)); |
|
#endif // HAVE_HALIDE |
|
return Ptr<BackendNode>(); |
|
} |
|
|
|
#ifdef HAVE_CANN |
|
virtual Ptr<BackendNode> initCann(const std::vector<Ptr<BackendWrapper> > &inputs, |
|
const std::vector<Ptr<BackendWrapper> > &outputs, |
|
const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE |
|
{ |
|
auto x = inputs[0].dynamicCast<CannBackendWrapper>(); |
|
|
|
// create operator |
|
auto op = std::make_shared<ge::op::SoftmaxV2>(name); |
|
|
|
// set attributes |
|
op->set_attr_axes(ge::Operator::OpListInt( |
|
{(int64_t)axisRaw} |
|
)); |
|
|
|
// set inputs |
|
// set inputs : x |
|
auto op_x = nodes[0].dynamicCast<CannBackendNode>()->getOp(); |
|
op->set_input_x_by_name(*op_x, x->name.c_str()); |
|
auto x_desc = x->getTensorDesc(); |
|
op->update_input_desc_x(*x_desc); |
|
|
|
// set outputs |
|
auto output_y_desc = std::make_shared<ge::TensorDesc>(ge::Shape(), ge::FORMAT_NCHW, ge::DT_FLOAT); |
|
op->update_output_desc_y(*output_y_desc); |
|
|
|
return Ptr<BackendNode>(new CannBackendNode(op)); |
|
} |
|
#endif // HAVE_CANN |
|
|
|
#ifdef HAVE_DNN_NGRAPH |
|
virtual Ptr<BackendNode> initNgraph(const std::vector<Ptr<BackendWrapper> >& inputs, |
|
const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE |
|
{ |
|
auto& ieInpNode = nodes[0].dynamicCast<InfEngineNgraphNode>()->node; |
|
int axis = normalize_axis(axisRaw, ieInpNode.get_shape().size()); |
|
if (logSoftMax) { |
|
return new InfEngineNgraphNode(std::make_shared<ngraph::op::v5::LogSoftmax>(ieInpNode, axis)); |
|
} else { |
|
return new InfEngineNgraphNode(std::make_shared<ngraph::op::v1::Softmax>(ieInpNode, axis)); |
|
} |
|
} |
|
#endif // HAVE_DNN_NGRAPH |
|
|
|
virtual bool tryQuantize(const std::vector<std::vector<float> > &scales, |
|
const std::vector<std::vector<int> > &zeropoints, LayerParams& params) CV_OVERRIDE |
|
{ |
|
float inpScale = scales[0][0]; |
|
Mat lookUpTable(1, 256, CV_32F); |
|
float* table = lookUpTable.ptr<float>(); |
|
for (int i = -128; i < 128; i++) |
|
{ |
|
float x = inpScale*(i - 127); // ensures exp(x) is always between (0, 1) |
|
table[i+128] = std::exp(x); |
|
} |
|
params.blobs.clear(); |
|
params.blobs.push_back(lookUpTable); |
|
params.set("input_scale", inpScale); |
|
params.set("input_zeropoint", zeropoints[0][0]); |
|
return true; |
|
} |
|
|
|
#ifdef HAVE_WEBNN |
|
virtual Ptr<BackendNode> initWebnn(const std::vector<Ptr<BackendWrapper> >& inputs, const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE |
|
{ |
|
Ptr<WebnnBackendNode> node = nodes[0].dynamicCast<WebnnBackendNode>(); |
|
auto& webnnInpOperand = node->operand; |
|
auto& webnnGraphBuilder = node->net->builder; |
|
auto operand = webnnGraphBuilder.Softmax(webnnInpOperand); |
|
return Ptr<BackendNode>(new WebnnBackendNode(operand)); |
|
} |
|
|
|
#endif |
|
|
|
int64 getFLOPS(const std::vector<MatShape> &inputs, |
|
const std::vector<MatShape> &outputs) const CV_OVERRIDE |
|
{ |
|
CV_UNUSED(outputs); // suppress unused variable warning |
|
int64 flops = 0; |
|
|
|
for (int i = 0; i < inputs.size(); i++) |
|
{ |
|
flops += 4*total(inputs[i]); |
|
} |
|
|
|
return flops; |
|
} |
|
|
|
int axisRaw; |
|
}; |
|
|
|
Ptr<SoftmaxLayer> SoftmaxLayer::create(const LayerParams& params) |
|
{ |
|
return Ptr<SoftmaxLayer>(new SoftMaxLayerImpl(params)); |
|
} |
|
|
|
} |
|
}
|
|
|