Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

377 lines
13 KiB

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Copyright (C) 2017, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "../precomp.hpp"
#include "layers_common.hpp"
#include "../op_cuda.hpp"
#include "../op_halide.hpp"
#include "../op_inf_engine.hpp"
#include "../ie_ngraph.hpp"
#include "../op_webnn.hpp"
#include "../op_cann.hpp"
#include <algorithm>
#include <stdlib.h>
#include <opencv2/core/utils/logger.hpp>
#include "cpu_kernels/softmax.hpp"
using std::max;
#ifdef HAVE_OPENCL
#include "opencl_kernels_dnn.hpp"
using namespace cv::dnn::ocl4dnn;
#endif
#ifdef HAVE_CUDA
#include "../cuda4dnn/primitives/softmax.hpp"
using namespace cv::dnn::cuda4dnn;
#endif
namespace cv
{
namespace dnn
{
class SoftMaxLayerImpl CV_FINAL : public SoftmaxLayer
{
public:
SoftMaxLayerImpl(const LayerParams& params)
{
axisRaw = params.get<int>("axis", 1);
logSoftMax = params.get<bool>("log_softmax", false);
setParamsFrom(params);
}
#ifdef HAVE_OPENCL
Ptr<OCL4DNNSoftmax<float> > softmaxOp;
#endif
bool getMemoryShapes(const std::vector<MatShape> &inputs,
const int requiredOutputs,
std::vector<MatShape> &outputs,
std::vector<MatShape> &internals) const CV_OVERRIDE
{
bool inplace = Layer::getMemoryShapes(inputs, requiredOutputs, outputs, internals);
MatShape shape = inputs[0];
int cAxis = normalize_axis(axisRaw, shape.size());
shape[cAxis] = 1;
internals.assign(1, shape);
return inplace;
}
virtual bool supportBackend(int backendId) CV_OVERRIDE
{
#ifdef HAVE_INF_ENGINE
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
return true;
#endif
#ifdef HAVE_WEBNN
if (backendId == DNN_BACKEND_WEBNN) {
// TODO: support logSoftMax
if (logSoftMax)
{
CV_LOG_WARNING(NULL, "logSoftMax is not supported by WebNN backend.")
}
return !logSoftMax;
}
#endif
return backendId == DNN_BACKEND_OPENCV ||
backendId == DNN_BACKEND_CUDA ||
(backendId == DNN_BACKEND_HALIDE && haveHalide() && axisRaw == 1) ||
backendId == DNN_BACKEND_CANN;
}
#ifdef HAVE_OPENCL
virtual void finalize(const std::vector<Mat*> &inputs, std::vector<Mat> &outputs) CV_OVERRIDE
{
softmaxOp.release();
}
bool forward_ocl(InputArrayOfArrays inputs_, OutputArrayOfArrays outputs_, OutputArrayOfArrays internals_)
{
std::vector<UMat> inputs;
std::vector<UMat> outputs;
std::vector<UMat> internals;
bool use_half = (inputs_.depth() == CV_16S);
inputs_.getUMatVector(inputs);
outputs_.getUMatVector(outputs);
internals_.getUMatVector(internals);
UMat& src = inputs[0];
UMat& dstMat = outputs[0];
int axis = normalize_axis(axisRaw, src.dims);
if (softmaxOp.empty())
{
OCL4DNNSoftmaxConfig config;
config.in_shape = shape(inputs[0]);
config.axis = axis;
config.channels = inputs[0].size[axis];
config.logsoftmax = logSoftMax;
config.use_half = use_half;
softmaxOp = Ptr<OCL4DNNSoftmax<float> >(new OCL4DNNSoftmax<float>(config));
}
if (softmaxOp->Forward(src, dstMat))
return true;
UMat& bufMat = internals[0];
MatShape s = shape(src);
size_t outerSize = total(s, 0, axis);
size_t channels = src.size[axis];
size_t innerSize = total(s, axis + 1);
String buildOpts = format("-DT=%s", use_half ? "half" : "float");
ocl::Kernel kmax, ksub, ksum, kdiv;
if (!kmax.create("kernel_channel_max", ocl::dnn::softmax_oclsrc, buildOpts))
return false;
if (!ksub.create("kernel_channel_subtract", ocl::dnn::softmax_oclsrc, buildOpts))
return false;
if (!ksum.create("kernel_channel_sum", ocl::dnn::softmax_oclsrc, buildOpts))
return false;
if (logSoftMax) buildOpts += " -DLOG_SOFTMAX ";
if (!kdiv.create("kernel_channel_div", ocl::dnn::softmax_oclsrc, buildOpts))
return false;
size_t bufSize = internals[0].total();
size_t totalSize = src.total();
size_t internal_globalSize[1] = { bufSize };
size_t total_globalSize[1] = { totalSize };
kmax.args((int)outerSize, (int)channels, (int)innerSize,
ocl::KernelArg::PtrReadOnly(src), ocl::KernelArg::PtrReadWrite(bufMat));
if (!kmax.run(1, internal_globalSize, NULL, false))
return false;
ksub.args((int)totalSize, (int)outerSize, (int)channels, (int)innerSize,
ocl::KernelArg::PtrReadOnly(bufMat),
ocl::KernelArg::PtrReadOnly(src), ocl::KernelArg::PtrWriteOnly(dstMat));
if (!ksub.run(1, total_globalSize, NULL, false))
return false;
ksum.args((int)outerSize, (int)channels, (int)innerSize,
ocl::KernelArg::PtrReadOnly(dstMat), ocl::KernelArg::PtrReadWrite(bufMat));
if (!ksum.run(1, internal_globalSize, NULL, false))
return false;
kdiv.args((int)totalSize, (int)outerSize, (int)channels, (int)innerSize,
ocl::KernelArg::PtrReadOnly(bufMat), ocl::KernelArg::PtrReadWrite(dstMat));
if (!kdiv.run(1, total_globalSize, NULL, false))
return false;
return true;
}
#endif
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE
{
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget),
forward_ocl(inputs_arr, outputs_arr, internals_arr))
if (inputs_arr.depth() == CV_16S)
{
forward_fallback(inputs_arr, outputs_arr, internals_arr);
return;
}
std::vector<Mat> inputs, outputs, internals;
inputs_arr.getMatVector(inputs);
outputs_arr.getMatVector(outputs);
const Mat &src = inputs[0];
Mat &dst = outputs[0];
int axis = normalize_axis(axisRaw, src.dims);
if(logSoftMax)
logSoftmax(dst, src, axis);
else
softmax(dst, src, axis);
}
#ifdef HAVE_CUDA
Ptr<BackendNode> initCUDA(
void *context_,
const std::vector<Ptr<BackendWrapper>>& inputs,
const std::vector<Ptr<BackendWrapper>>& outputs
) override
{
auto context = reinterpret_cast<csl::CSLContext*>(context_);
auto input_wrapper = inputs[0].dynamicCast<CUDABackendWrapper>();
auto channel_axis = normalize_axis(axisRaw, input_wrapper->getRank());
return make_cuda_node<cuda4dnn::SoftmaxOp>(preferableTarget, std::move(context->cudnn_handle), channel_axis, logSoftMax);
}
#endif
virtual Ptr<BackendNode> initHalide(const std::vector<Ptr<BackendWrapper> > &inputs) CV_OVERRIDE
{
#ifdef HAVE_HALIDE
Halide::Buffer<float> inputBuffer = halideBuffer(inputs[0]);
int inW, inH, inC, inN;
getCanonicalSize(inputBuffer, &inW, &inH, &inC, &inN);
if (inW != 1 || inH != 1)
CV_Error(cv::Error::StsNotImplemented,
"Halide backend for SoftMax with spatial size "
"more than 1x1 is not implemented");
Halide::Var x("x"), y("y"), c("c"), n("n");
Halide::Func top = (name.empty() ? Halide::Func() : Halide::Func(name));
Halide::Func expInput("expInput");
Halide::RDom r(0, inW, 0, inH, 0, inC);
expInput(x, y, c, n) = exp(inputBuffer(x, y, c, n));
Halide::Expr globalSum = sum(expInput(r.x, r.y, r.z, n));
top(x, y, c, n) = expInput(x, y, c, n) / globalSum;
return Ptr<BackendNode>(new HalideBackendNode(top));
#endif // HAVE_HALIDE
return Ptr<BackendNode>();
}
#ifdef HAVE_CANN
virtual Ptr<BackendNode> initCann(const std::vector<Ptr<BackendWrapper> > &inputs,
const std::vector<Ptr<BackendWrapper> > &outputs,
const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE
{
auto x = inputs[0].dynamicCast<CannBackendWrapper>();
// create operator
auto op = std::make_shared<ge::op::SoftmaxV2>(name);
// set attributes
op->set_attr_axes(ge::Operator::OpListInt(
{(int64_t)axisRaw}
));
// set inputs
// set inputs : x
auto op_x = nodes[0].dynamicCast<CannBackendNode>()->getOp();
op->set_input_x_by_name(*op_x, x->name.c_str());
auto x_desc = x->getTensorDesc();
op->update_input_desc_x(*x_desc);
// set outputs
auto output_y_desc = std::make_shared<ge::TensorDesc>(ge::Shape(), ge::FORMAT_NCHW, ge::DT_FLOAT);
op->update_output_desc_y(*output_y_desc);
return Ptr<BackendNode>(new CannBackendNode(op));
}
#endif // HAVE_CANN
#ifdef HAVE_DNN_NGRAPH
virtual Ptr<BackendNode> initNgraph(const std::vector<Ptr<BackendWrapper> >& inputs,
const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE
{
auto& ieInpNode = nodes[0].dynamicCast<InfEngineNgraphNode>()->node;
int axis = normalize_axis(axisRaw, ieInpNode.get_shape().size());
if (logSoftMax) {
return new InfEngineNgraphNode(std::make_shared<ngraph::op::v5::LogSoftmax>(ieInpNode, axis));
} else {
return new InfEngineNgraphNode(std::make_shared<ngraph::op::v1::Softmax>(ieInpNode, axis));
}
}
#endif // HAVE_DNN_NGRAPH
virtual bool tryQuantize(const std::vector<std::vector<float> > &scales,
const std::vector<std::vector<int> > &zeropoints, LayerParams& params) CV_OVERRIDE
{
float inpScale = scales[0][0];
Mat lookUpTable(1, 256, CV_32F);
float* table = lookUpTable.ptr<float>();
for (int i = -128; i < 128; i++)
{
float x = inpScale*(i - 127); // ensures exp(x) is always between (0, 1)
table[i+128] = std::exp(x);
}
params.blobs.clear();
params.blobs.push_back(lookUpTable);
params.set("input_scale", inpScale);
params.set("input_zeropoint", zeropoints[0][0]);
return true;
}
#ifdef HAVE_WEBNN
virtual Ptr<BackendNode> initWebnn(const std::vector<Ptr<BackendWrapper> >& inputs, const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE
{
Ptr<WebnnBackendNode> node = nodes[0].dynamicCast<WebnnBackendNode>();
auto& webnnInpOperand = node->operand;
auto& webnnGraphBuilder = node->net->builder;
auto operand = webnnGraphBuilder.Softmax(webnnInpOperand);
return Ptr<BackendNode>(new WebnnBackendNode(operand));
}
#endif
int64 getFLOPS(const std::vector<MatShape> &inputs,
const std::vector<MatShape> &outputs) const CV_OVERRIDE
{
CV_UNUSED(outputs); // suppress unused variable warning
int64 flops = 0;
for (int i = 0; i < inputs.size(); i++)
{
flops += 4*total(inputs[i]);
}
return flops;
}
int axisRaw;
};
Ptr<SoftmaxLayer> SoftmaxLayer::create(const LayerParams& params)
{
return Ptr<SoftmaxLayer>(new SoftMaxLayerImpl(params));
}
}
}