Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
863 lines
32 KiB
863 lines
32 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
|
|
using namespace cv; |
|
using namespace cv::gpu; |
|
|
|
#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER) |
|
|
|
double cv::gpu::norm(InputArray, int, InputArray, GpuMat&) { throw_no_cuda(); return 0.0; } |
|
double cv::gpu::norm(InputArray, InputArray, GpuMat&, int) { throw_no_cuda(); return 0.0; } |
|
|
|
Scalar cv::gpu::sum(InputArray, InputArray, GpuMat&) { throw_no_cuda(); return Scalar(); } |
|
Scalar cv::gpu::absSum(InputArray, InputArray, GpuMat&) { throw_no_cuda(); return Scalar(); } |
|
Scalar cv::gpu::sqrSum(InputArray, InputArray, GpuMat&) { throw_no_cuda(); return Scalar(); } |
|
|
|
void cv::gpu::minMax(InputArray, double*, double*, InputArray, GpuMat&) { throw_no_cuda(); } |
|
void cv::gpu::minMaxLoc(InputArray, double*, double*, Point*, Point*, InputArray, GpuMat&, GpuMat&) { throw_no_cuda(); } |
|
|
|
int cv::gpu::countNonZero(InputArray, GpuMat&) { throw_no_cuda(); return 0; } |
|
|
|
void cv::gpu::reduce(InputArray, OutputArray, int, int, int, Stream&) { throw_no_cuda(); } |
|
|
|
void cv::gpu::meanStdDev(InputArray, Scalar&, Scalar&, GpuMat&) { throw_no_cuda(); } |
|
|
|
void cv::gpu::rectStdDev(InputArray, InputArray, OutputArray, Rect, Stream&) { throw_no_cuda(); } |
|
|
|
void cv::gpu::normalize(InputArray, OutputArray, double, double, int, int, InputArray, GpuMat&, GpuMat&) { throw_no_cuda(); } |
|
|
|
void cv::gpu::integral(InputArray, OutputArray, GpuMat&, Stream&) { throw_no_cuda(); } |
|
void cv::gpu::sqrIntegral(InputArray, OutputArray, GpuMat&, Stream&) { throw_no_cuda(); } |
|
|
|
#else |
|
|
|
namespace |
|
{ |
|
class DeviceBuffer |
|
{ |
|
public: |
|
explicit DeviceBuffer(int count_ = 1) : count(count_) |
|
{ |
|
cudaSafeCall( cudaMalloc(&pdev, count * sizeof(double)) ); |
|
} |
|
~DeviceBuffer() |
|
{ |
|
cudaSafeCall( cudaFree(pdev) ); |
|
} |
|
|
|
operator double*() {return pdev;} |
|
|
|
void download(double* hptr) |
|
{ |
|
double hbuf; |
|
cudaSafeCall( cudaMemcpy(&hbuf, pdev, sizeof(double), cudaMemcpyDeviceToHost) ); |
|
*hptr = hbuf; |
|
} |
|
void download(double** hptrs) |
|
{ |
|
AutoBuffer<double, 2 * sizeof(double)> hbuf(count); |
|
cudaSafeCall( cudaMemcpy((void*)hbuf, pdev, count * sizeof(double), cudaMemcpyDeviceToHost) ); |
|
for (int i = 0; i < count; ++i) |
|
*hptrs[i] = hbuf[i]; |
|
} |
|
|
|
private: |
|
double* pdev; |
|
int count; |
|
}; |
|
} |
|
|
|
//////////////////////////////////////////////////////////////////////// |
|
// norm |
|
|
|
double cv::gpu::norm(InputArray _src, int normType, InputArray _mask, GpuMat& buf) |
|
{ |
|
GpuMat src = _src.getGpuMat(); |
|
GpuMat mask = _mask.getGpuMat(); |
|
|
|
CV_Assert( normType == NORM_INF || normType == NORM_L1 || normType == NORM_L2 ); |
|
CV_Assert( mask.empty() || (mask.type() == CV_8UC1 && mask.size() == src.size() && src.channels() == 1) ); |
|
|
|
GpuMat src_single_channel = src.reshape(1); |
|
|
|
if (normType == NORM_L1) |
|
return gpu::absSum(src_single_channel, mask, buf)[0]; |
|
|
|
if (normType == NORM_L2) |
|
return std::sqrt(gpu::sqrSum(src_single_channel, mask, buf)[0]); |
|
|
|
// NORM_INF |
|
double min_val, max_val; |
|
gpu::minMax(src_single_channel, &min_val, &max_val, mask, buf); |
|
return std::max(std::abs(min_val), std::abs(max_val)); |
|
} |
|
|
|
double cv::gpu::norm(InputArray _src1, InputArray _src2, GpuMat& buf, int normType) |
|
{ |
|
#if CUDA_VERSION < 5050 |
|
(void) buf; |
|
|
|
typedef NppStatus (*func_t)(const Npp8u* pSrc1, int nSrcStep1, const Npp8u* pSrc2, int nSrcStep2, NppiSize oSizeROI, Npp64f* pRetVal); |
|
|
|
static const func_t funcs[] = {nppiNormDiff_Inf_8u_C1R, nppiNormDiff_L1_8u_C1R, nppiNormDiff_L2_8u_C1R}; |
|
#else |
|
typedef NppStatus (*func_t)(const Npp8u* pSrc1, int nSrcStep1, const Npp8u* pSrc2, int nSrcStep2, |
|
NppiSize oSizeROI, Npp64f* pRetVal, Npp8u * pDeviceBuffer); |
|
|
|
typedef NppStatus (*buf_size_func_t)(NppiSize oSizeROI, int* hpBufferSize); |
|
|
|
static const func_t funcs[] = {nppiNormDiff_Inf_8u_C1R, nppiNormDiff_L1_8u_C1R, nppiNormDiff_L2_8u_C1R}; |
|
|
|
static const buf_size_func_t buf_size_funcs[] = {nppiNormDiffInfGetBufferHostSize_8u_C1R, nppiNormDiffL1GetBufferHostSize_8u_C1R, nppiNormDiffL2GetBufferHostSize_8u_C1R}; |
|
#endif |
|
|
|
GpuMat src1 = _src1.getGpuMat(); |
|
GpuMat src2 = _src2.getGpuMat(); |
|
|
|
CV_Assert( src1.type() == CV_8UC1 ); |
|
CV_Assert( src1.size() == src2.size() && src1.type() == src2.type() ); |
|
CV_Assert( normType == NORM_INF || normType == NORM_L1 || normType == NORM_L2 ); |
|
|
|
NppiSize sz; |
|
sz.width = src1.cols; |
|
sz.height = src1.rows; |
|
|
|
const int funcIdx = normType >> 1; |
|
|
|
DeviceBuffer dbuf; |
|
|
|
#if CUDA_VERSION < 5050 |
|
nppSafeCall( funcs[funcIdx](src1.ptr<Npp8u>(), static_cast<int>(src1.step), src2.ptr<Npp8u>(), static_cast<int>(src2.step), sz, dbuf) ); |
|
#else |
|
int bufSize; |
|
buf_size_funcs[funcIdx](sz, &bufSize); |
|
|
|
ensureSizeIsEnough(1, bufSize, CV_8UC1, buf); |
|
|
|
nppSafeCall( funcs[funcIdx](src1.ptr<Npp8u>(), static_cast<int>(src1.step), src2.ptr<Npp8u>(), static_cast<int>(src2.step), sz, dbuf, buf.data) ); |
|
#endif |
|
|
|
cudaSafeCall( cudaDeviceSynchronize() ); |
|
|
|
double retVal; |
|
dbuf.download(&retVal); |
|
|
|
return retVal; |
|
} |
|
|
|
//////////////////////////////////////////////////////////////////////// |
|
// Sum |
|
|
|
namespace sum |
|
{ |
|
void getBufSize(int cols, int rows, int cn, int& bufcols, int& bufrows); |
|
|
|
template <typename T, int cn> |
|
void run(PtrStepSzb src, void* buf, double* sum, PtrStepSzb mask); |
|
|
|
template <typename T, int cn> |
|
void runAbs(PtrStepSzb src, void* buf, double* sum, PtrStepSzb mask); |
|
|
|
template <typename T, int cn> |
|
void runSqr(PtrStepSzb src, void* buf, double* sum, PtrStepSzb mask); |
|
} |
|
|
|
Scalar cv::gpu::sum(InputArray _src, InputArray _mask, GpuMat& buf) |
|
{ |
|
GpuMat src = _src.getGpuMat(); |
|
GpuMat mask = _mask.getGpuMat(); |
|
|
|
typedef void (*func_t)(PtrStepSzb src, void* buf, double* sum, PtrStepSzb mask); |
|
static const func_t funcs[7][5] = |
|
{ |
|
{0, ::sum::run<uchar , 1>, ::sum::run<uchar , 2>, ::sum::run<uchar , 3>, ::sum::run<uchar , 4>}, |
|
{0, ::sum::run<schar , 1>, ::sum::run<schar , 2>, ::sum::run<schar , 3>, ::sum::run<schar , 4>}, |
|
{0, ::sum::run<ushort, 1>, ::sum::run<ushort, 2>, ::sum::run<ushort, 3>, ::sum::run<ushort, 4>}, |
|
{0, ::sum::run<short , 1>, ::sum::run<short , 2>, ::sum::run<short , 3>, ::sum::run<short , 4>}, |
|
{0, ::sum::run<int , 1>, ::sum::run<int , 2>, ::sum::run<int , 3>, ::sum::run<int , 4>}, |
|
{0, ::sum::run<float , 1>, ::sum::run<float , 2>, ::sum::run<float , 3>, ::sum::run<float , 4>}, |
|
{0, ::sum::run<double, 1>, ::sum::run<double, 2>, ::sum::run<double, 3>, ::sum::run<double, 4>} |
|
}; |
|
|
|
CV_Assert( mask.empty() || (mask.type() == CV_8UC1 && mask.size() == src.size()) ); |
|
|
|
if (src.depth() == CV_64F) |
|
{ |
|
if (!deviceSupports(NATIVE_DOUBLE)) |
|
CV_Error(cv::Error::StsUnsupportedFormat, "The device doesn't support double"); |
|
} |
|
|
|
Size buf_size; |
|
::sum::getBufSize(src.cols, src.rows, src.channels(), buf_size.width, buf_size.height); |
|
ensureSizeIsEnough(buf_size, CV_8U, buf); |
|
buf.setTo(Scalar::all(0)); |
|
|
|
const func_t func = funcs[src.depth()][src.channels()]; |
|
|
|
double result[4]; |
|
func(src, buf.data, result, mask); |
|
|
|
return Scalar(result[0], result[1], result[2], result[3]); |
|
} |
|
|
|
Scalar cv::gpu::absSum(InputArray _src, InputArray _mask, GpuMat& buf) |
|
{ |
|
GpuMat src = _src.getGpuMat(); |
|
GpuMat mask = _mask.getGpuMat(); |
|
|
|
typedef void (*func_t)(PtrStepSzb src, void* buf, double* sum, PtrStepSzb mask); |
|
static const func_t funcs[7][5] = |
|
{ |
|
{0, ::sum::runAbs<uchar , 1>, ::sum::runAbs<uchar , 2>, ::sum::runAbs<uchar , 3>, ::sum::runAbs<uchar , 4>}, |
|
{0, ::sum::runAbs<schar , 1>, ::sum::runAbs<schar , 2>, ::sum::runAbs<schar , 3>, ::sum::runAbs<schar , 4>}, |
|
{0, ::sum::runAbs<ushort, 1>, ::sum::runAbs<ushort, 2>, ::sum::runAbs<ushort, 3>, ::sum::runAbs<ushort, 4>}, |
|
{0, ::sum::runAbs<short , 1>, ::sum::runAbs<short , 2>, ::sum::runAbs<short , 3>, ::sum::runAbs<short , 4>}, |
|
{0, ::sum::runAbs<int , 1>, ::sum::runAbs<int , 2>, ::sum::runAbs<int , 3>, ::sum::runAbs<int , 4>}, |
|
{0, ::sum::runAbs<float , 1>, ::sum::runAbs<float , 2>, ::sum::runAbs<float , 3>, ::sum::runAbs<float , 4>}, |
|
{0, ::sum::runAbs<double, 1>, ::sum::runAbs<double, 2>, ::sum::runAbs<double, 3>, ::sum::runAbs<double, 4>} |
|
}; |
|
|
|
CV_Assert( mask.empty() || (mask.type() == CV_8UC1 && mask.size() == src.size()) ); |
|
|
|
if (src.depth() == CV_64F) |
|
{ |
|
if (!deviceSupports(NATIVE_DOUBLE)) |
|
CV_Error(cv::Error::StsUnsupportedFormat, "The device doesn't support double"); |
|
} |
|
|
|
Size buf_size; |
|
::sum::getBufSize(src.cols, src.rows, src.channels(), buf_size.width, buf_size.height); |
|
ensureSizeIsEnough(buf_size, CV_8U, buf); |
|
buf.setTo(Scalar::all(0)); |
|
|
|
const func_t func = funcs[src.depth()][src.channels()]; |
|
|
|
double result[4]; |
|
func(src, buf.data, result, mask); |
|
|
|
return Scalar(result[0], result[1], result[2], result[3]); |
|
} |
|
|
|
Scalar cv::gpu::sqrSum(InputArray _src, InputArray _mask, GpuMat& buf) |
|
{ |
|
GpuMat src = _src.getGpuMat(); |
|
GpuMat mask = _mask.getGpuMat(); |
|
|
|
typedef void (*func_t)(PtrStepSzb src, void* buf, double* sum, PtrStepSzb mask); |
|
static const func_t funcs[7][5] = |
|
{ |
|
{0, ::sum::runSqr<uchar , 1>, ::sum::runSqr<uchar , 2>, ::sum::runSqr<uchar , 3>, ::sum::runSqr<uchar , 4>}, |
|
{0, ::sum::runSqr<schar , 1>, ::sum::runSqr<schar , 2>, ::sum::runSqr<schar , 3>, ::sum::runSqr<schar , 4>}, |
|
{0, ::sum::runSqr<ushort, 1>, ::sum::runSqr<ushort, 2>, ::sum::runSqr<ushort, 3>, ::sum::runSqr<ushort, 4>}, |
|
{0, ::sum::runSqr<short , 1>, ::sum::runSqr<short , 2>, ::sum::runSqr<short , 3>, ::sum::runSqr<short , 4>}, |
|
{0, ::sum::runSqr<int , 1>, ::sum::runSqr<int , 2>, ::sum::runSqr<int , 3>, ::sum::runSqr<int , 4>}, |
|
{0, ::sum::runSqr<float , 1>, ::sum::runSqr<float , 2>, ::sum::runSqr<float , 3>, ::sum::runSqr<float , 4>}, |
|
{0, ::sum::runSqr<double, 1>, ::sum::runSqr<double, 2>, ::sum::runSqr<double, 3>, ::sum::runSqr<double, 4>} |
|
}; |
|
|
|
CV_Assert( mask.empty() || (mask.type() == CV_8UC1 && mask.size() == src.size()) ); |
|
|
|
if (src.depth() == CV_64F) |
|
{ |
|
if (!deviceSupports(NATIVE_DOUBLE)) |
|
CV_Error(cv::Error::StsUnsupportedFormat, "The device doesn't support double"); |
|
} |
|
|
|
Size buf_size; |
|
::sum::getBufSize(src.cols, src.rows, src.channels(), buf_size.width, buf_size.height); |
|
ensureSizeIsEnough(buf_size, CV_8U, buf); |
|
buf.setTo(Scalar::all(0)); |
|
|
|
const func_t func = funcs[src.depth()][src.channels()]; |
|
|
|
double result[4]; |
|
func(src, buf.data, result, mask); |
|
|
|
return Scalar(result[0], result[1], result[2], result[3]); |
|
} |
|
|
|
//////////////////////////////////////////////////////////////////////// |
|
// minMax |
|
|
|
namespace minMax |
|
{ |
|
void getBufSize(int cols, int rows, int& bufcols, int& bufrows); |
|
|
|
template <typename T> |
|
void run(const PtrStepSzb src, const PtrStepb mask, double* minval, double* maxval, PtrStepb buf); |
|
} |
|
|
|
void cv::gpu::minMax(InputArray _src, double* minVal, double* maxVal, InputArray _mask, GpuMat& buf) |
|
{ |
|
GpuMat src = _src.getGpuMat(); |
|
GpuMat mask = _mask.getGpuMat(); |
|
|
|
typedef void (*func_t)(const PtrStepSzb src, const PtrStepb mask, double* minval, double* maxval, PtrStepb buf); |
|
static const func_t funcs[] = |
|
{ |
|
::minMax::run<uchar>, |
|
::minMax::run<schar>, |
|
::minMax::run<ushort>, |
|
::minMax::run<short>, |
|
::minMax::run<int>, |
|
::minMax::run<float>, |
|
::minMax::run<double> |
|
}; |
|
|
|
CV_Assert( src.channels() == 1 ); |
|
CV_Assert( mask.empty() || (mask.size() == src.size() && mask.type() == CV_8U) ); |
|
|
|
if (src.depth() == CV_64F) |
|
{ |
|
if (!deviceSupports(NATIVE_DOUBLE)) |
|
CV_Error(cv::Error::StsUnsupportedFormat, "The device doesn't support double"); |
|
} |
|
|
|
Size buf_size; |
|
::minMax::getBufSize(src.cols, src.rows, buf_size.width, buf_size.height); |
|
ensureSizeIsEnough(buf_size, CV_8U, buf); |
|
|
|
const func_t func = funcs[src.depth()]; |
|
|
|
double temp1, temp2; |
|
func(src, mask, minVal ? minVal : &temp1, maxVal ? maxVal : &temp2, buf); |
|
} |
|
|
|
//////////////////////////////////////////////////////////////////////// |
|
// minMaxLoc |
|
|
|
namespace minMaxLoc |
|
{ |
|
void getBufSize(int cols, int rows, size_t elem_size, int& b1cols, int& b1rows, int& b2cols, int& b2rows); |
|
|
|
template <typename T> |
|
void run(const PtrStepSzb src, const PtrStepb mask, double* minval, double* maxval, int* minloc, int* maxloc, PtrStepb valbuf, PtrStep<unsigned int> locbuf); |
|
} |
|
|
|
void cv::gpu::minMaxLoc(InputArray _src, double* minVal, double* maxVal, Point* minLoc, Point* maxLoc, |
|
InputArray _mask, GpuMat& valBuf, GpuMat& locBuf) |
|
{ |
|
GpuMat src = _src.getGpuMat(); |
|
GpuMat mask = _mask.getGpuMat(); |
|
|
|
typedef void (*func_t)(const PtrStepSzb src, const PtrStepb mask, double* minval, double* maxval, int* minloc, int* maxloc, PtrStepb valbuf, PtrStep<unsigned int> locbuf); |
|
static const func_t funcs[] = |
|
{ |
|
::minMaxLoc::run<uchar>, |
|
::minMaxLoc::run<schar>, |
|
::minMaxLoc::run<ushort>, |
|
::minMaxLoc::run<short>, |
|
::minMaxLoc::run<int>, |
|
::minMaxLoc::run<float>, |
|
::minMaxLoc::run<double> |
|
}; |
|
|
|
CV_Assert( src.channels() == 1 ); |
|
CV_Assert( mask.empty() || (mask.size() == src.size() && mask.type() == CV_8U) ); |
|
|
|
if (src.depth() == CV_64F) |
|
{ |
|
if (!deviceSupports(NATIVE_DOUBLE)) |
|
CV_Error(cv::Error::StsUnsupportedFormat, "The device doesn't support double"); |
|
} |
|
|
|
Size valbuf_size, locbuf_size; |
|
::minMaxLoc::getBufSize(src.cols, src.rows, src.elemSize(), valbuf_size.width, valbuf_size.height, locbuf_size.width, locbuf_size.height); |
|
ensureSizeIsEnough(valbuf_size, CV_8U, valBuf); |
|
ensureSizeIsEnough(locbuf_size, CV_8U, locBuf); |
|
|
|
const func_t func = funcs[src.depth()]; |
|
|
|
double temp1, temp2; |
|
Point temp3, temp4; |
|
func(src, mask, minVal ? minVal : &temp1, maxVal ? maxVal : &temp2, minLoc ? &minLoc->x : &temp3.x, maxLoc ? &maxLoc->x : &temp4.x, valBuf, locBuf); |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////////////// |
|
// countNonZero |
|
|
|
namespace countNonZero |
|
{ |
|
void getBufSize(int cols, int rows, int& bufcols, int& bufrows); |
|
|
|
template <typename T> |
|
int run(const PtrStepSzb src, PtrStep<unsigned int> buf); |
|
} |
|
|
|
int cv::gpu::countNonZero(InputArray _src, GpuMat& buf) |
|
{ |
|
GpuMat src = _src.getGpuMat(); |
|
|
|
typedef int (*func_t)(const PtrStepSzb src, PtrStep<unsigned int> buf); |
|
static const func_t funcs[] = |
|
{ |
|
::countNonZero::run<uchar>, |
|
::countNonZero::run<schar>, |
|
::countNonZero::run<ushort>, |
|
::countNonZero::run<short>, |
|
::countNonZero::run<int>, |
|
::countNonZero::run<float>, |
|
::countNonZero::run<double> |
|
}; |
|
|
|
CV_Assert(src.channels() == 1); |
|
|
|
if (src.depth() == CV_64F) |
|
{ |
|
if (!deviceSupports(NATIVE_DOUBLE)) |
|
CV_Error(cv::Error::StsUnsupportedFormat, "The device doesn't support double"); |
|
} |
|
|
|
Size buf_size; |
|
::countNonZero::getBufSize(src.cols, src.rows, buf_size.width, buf_size.height); |
|
ensureSizeIsEnough(buf_size, CV_8U, buf); |
|
|
|
const func_t func = funcs[src.depth()]; |
|
|
|
return func(src, buf); |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////////////// |
|
// reduce |
|
|
|
namespace reduce |
|
{ |
|
template <typename T, typename S, typename D> |
|
void rows(PtrStepSzb src, void* dst, int op, cudaStream_t stream); |
|
|
|
template <typename T, typename S, typename D> |
|
void cols(PtrStepSzb src, void* dst, int cn, int op, cudaStream_t stream); |
|
} |
|
|
|
void cv::gpu::reduce(InputArray _src, OutputArray _dst, int dim, int reduceOp, int dtype, Stream& stream) |
|
{ |
|
GpuMat src = _src.getGpuMat(); |
|
|
|
CV_Assert( src.channels() <= 4 ); |
|
CV_Assert( dim == 0 || dim == 1 ); |
|
CV_Assert( reduceOp == REDUCE_SUM || reduceOp == REDUCE_AVG || reduceOp == REDUCE_MAX || reduceOp == REDUCE_MIN ); |
|
|
|
if (dtype < 0) |
|
dtype = src.depth(); |
|
|
|
_dst.create(1, dim == 0 ? src.cols : src.rows, CV_MAKE_TYPE(CV_MAT_DEPTH(dtype), src.channels())); |
|
GpuMat dst = _dst.getGpuMat(); |
|
|
|
if (dim == 0) |
|
{ |
|
typedef void (*func_t)(PtrStepSzb src, void* dst, int op, cudaStream_t stream); |
|
static const func_t funcs[7][7] = |
|
{ |
|
{ |
|
::reduce::rows<unsigned char, int, unsigned char>, |
|
0/*::reduce::rows<unsigned char, int, signed char>*/, |
|
0/*::reduce::rows<unsigned char, int, unsigned short>*/, |
|
0/*::reduce::rows<unsigned char, int, short>*/, |
|
::reduce::rows<unsigned char, int, int>, |
|
::reduce::rows<unsigned char, float, float>, |
|
::reduce::rows<unsigned char, double, double> |
|
}, |
|
{ |
|
0/*::reduce::rows<signed char, int, unsigned char>*/, |
|
0/*::reduce::rows<signed char, int, signed char>*/, |
|
0/*::reduce::rows<signed char, int, unsigned short>*/, |
|
0/*::reduce::rows<signed char, int, short>*/, |
|
0/*::reduce::rows<signed char, int, int>*/, |
|
0/*::reduce::rows<signed char, float, float>*/, |
|
0/*::reduce::rows<signed char, double, double>*/ |
|
}, |
|
{ |
|
0/*::reduce::rows<unsigned short, int, unsigned char>*/, |
|
0/*::reduce::rows<unsigned short, int, signed char>*/, |
|
::reduce::rows<unsigned short, int, unsigned short>, |
|
0/*::reduce::rows<unsigned short, int, short>*/, |
|
::reduce::rows<unsigned short, int, int>, |
|
::reduce::rows<unsigned short, float, float>, |
|
::reduce::rows<unsigned short, double, double> |
|
}, |
|
{ |
|
0/*::reduce::rows<short, int, unsigned char>*/, |
|
0/*::reduce::rows<short, int, signed char>*/, |
|
0/*::reduce::rows<short, int, unsigned short>*/, |
|
::reduce::rows<short, int, short>, |
|
::reduce::rows<short, int, int>, |
|
::reduce::rows<short, float, float>, |
|
::reduce::rows<short, double, double> |
|
}, |
|
{ |
|
0/*::reduce::rows<int, int, unsigned char>*/, |
|
0/*::reduce::rows<int, int, signed char>*/, |
|
0/*::reduce::rows<int, int, unsigned short>*/, |
|
0/*::reduce::rows<int, int, short>*/, |
|
::reduce::rows<int, int, int>, |
|
::reduce::rows<int, float, float>, |
|
::reduce::rows<int, double, double> |
|
}, |
|
{ |
|
0/*::reduce::rows<float, float, unsigned char>*/, |
|
0/*::reduce::rows<float, float, signed char>*/, |
|
0/*::reduce::rows<float, float, unsigned short>*/, |
|
0/*::reduce::rows<float, float, short>*/, |
|
0/*::reduce::rows<float, float, int>*/, |
|
::reduce::rows<float, float, float>, |
|
::reduce::rows<float, double, double> |
|
}, |
|
{ |
|
0/*::reduce::rows<double, double, unsigned char>*/, |
|
0/*::reduce::rows<double, double, signed char>*/, |
|
0/*::reduce::rows<double, double, unsigned short>*/, |
|
0/*::reduce::rows<double, double, short>*/, |
|
0/*::reduce::rows<double, double, int>*/, |
|
0/*::reduce::rows<double, double, float>*/, |
|
::reduce::rows<double, double, double> |
|
} |
|
}; |
|
|
|
const func_t func = funcs[src.depth()][dst.depth()]; |
|
|
|
if (!func) |
|
CV_Error(cv::Error::StsUnsupportedFormat, "Unsupported combination of input and output array formats"); |
|
|
|
func(src.reshape(1), dst.data, reduceOp, StreamAccessor::getStream(stream)); |
|
} |
|
else |
|
{ |
|
typedef void (*func_t)(PtrStepSzb src, void* dst, int cn, int op, cudaStream_t stream); |
|
static const func_t funcs[7][7] = |
|
{ |
|
{ |
|
::reduce::cols<unsigned char, int, unsigned char>, |
|
0/*::reduce::cols<unsigned char, int, signed char>*/, |
|
0/*::reduce::cols<unsigned char, int, unsigned short>*/, |
|
0/*::reduce::cols<unsigned char, int, short>*/, |
|
::reduce::cols<unsigned char, int, int>, |
|
::reduce::cols<unsigned char, float, float>, |
|
::reduce::cols<unsigned char, double, double> |
|
}, |
|
{ |
|
0/*::reduce::cols<signed char, int, unsigned char>*/, |
|
0/*::reduce::cols<signed char, int, signed char>*/, |
|
0/*::reduce::cols<signed char, int, unsigned short>*/, |
|
0/*::reduce::cols<signed char, int, short>*/, |
|
0/*::reduce::cols<signed char, int, int>*/, |
|
0/*::reduce::cols<signed char, float, float>*/, |
|
0/*::reduce::cols<signed char, double, double>*/ |
|
}, |
|
{ |
|
0/*::reduce::cols<unsigned short, int, unsigned char>*/, |
|
0/*::reduce::cols<unsigned short, int, signed char>*/, |
|
::reduce::cols<unsigned short, int, unsigned short>, |
|
0/*::reduce::cols<unsigned short, int, short>*/, |
|
::reduce::cols<unsigned short, int, int>, |
|
::reduce::cols<unsigned short, float, float>, |
|
::reduce::cols<unsigned short, double, double> |
|
}, |
|
{ |
|
0/*::reduce::cols<short, int, unsigned char>*/, |
|
0/*::reduce::cols<short, int, signed char>*/, |
|
0/*::reduce::cols<short, int, unsigned short>*/, |
|
::reduce::cols<short, int, short>, |
|
::reduce::cols<short, int, int>, |
|
::reduce::cols<short, float, float>, |
|
::reduce::cols<short, double, double> |
|
}, |
|
{ |
|
0/*::reduce::cols<int, int, unsigned char>*/, |
|
0/*::reduce::cols<int, int, signed char>*/, |
|
0/*::reduce::cols<int, int, unsigned short>*/, |
|
0/*::reduce::cols<int, int, short>*/, |
|
::reduce::cols<int, int, int>, |
|
::reduce::cols<int, float, float>, |
|
::reduce::cols<int, double, double> |
|
}, |
|
{ |
|
0/*::reduce::cols<float, float, unsigned char>*/, |
|
0/*::reduce::cols<float, float, signed char>*/, |
|
0/*::reduce::cols<float, float, unsigned short>*/, |
|
0/*::reduce::cols<float, float, short>*/, |
|
0/*::reduce::cols<float, float, int>*/, |
|
::reduce::cols<float, float, float>, |
|
::reduce::cols<float, double, double> |
|
}, |
|
{ |
|
0/*::reduce::cols<double, double, unsigned char>*/, |
|
0/*::reduce::cols<double, double, signed char>*/, |
|
0/*::reduce::cols<double, double, unsigned short>*/, |
|
0/*::reduce::cols<double, double, short>*/, |
|
0/*::reduce::cols<double, double, int>*/, |
|
0/*::reduce::cols<double, double, float>*/, |
|
::reduce::cols<double, double, double> |
|
} |
|
}; |
|
|
|
const func_t func = funcs[src.depth()][dst.depth()]; |
|
|
|
if (!func) |
|
CV_Error(cv::Error::StsUnsupportedFormat, "Unsupported combination of input and output array formats"); |
|
|
|
func(src, dst.data, src.channels(), reduceOp, StreamAccessor::getStream(stream)); |
|
} |
|
} |
|
|
|
//////////////////////////////////////////////////////////////////////// |
|
// meanStdDev |
|
|
|
void cv::gpu::meanStdDev(InputArray _src, Scalar& mean, Scalar& stddev, GpuMat& buf) |
|
{ |
|
GpuMat src = _src.getGpuMat(); |
|
|
|
CV_Assert( src.type() == CV_8UC1 ); |
|
|
|
if (!deviceSupports(FEATURE_SET_COMPUTE_13)) |
|
CV_Error(cv::Error::StsNotImplemented, "Not sufficient compute capebility"); |
|
|
|
NppiSize sz; |
|
sz.width = src.cols; |
|
sz.height = src.rows; |
|
|
|
DeviceBuffer dbuf(2); |
|
|
|
int bufSize; |
|
#if (CUDA_VERSION <= 4020) |
|
nppSafeCall( nppiMeanStdDev8uC1RGetBufferHostSize(sz, &bufSize) ); |
|
#else |
|
nppSafeCall( nppiMeanStdDevGetBufferHostSize_8u_C1R(sz, &bufSize) ); |
|
#endif |
|
|
|
ensureSizeIsEnough(1, bufSize, CV_8UC1, buf); |
|
|
|
nppSafeCall( nppiMean_StdDev_8u_C1R(src.ptr<Npp8u>(), static_cast<int>(src.step), sz, buf.ptr<Npp8u>(), dbuf, (double*)dbuf + 1) ); |
|
|
|
cudaSafeCall( cudaDeviceSynchronize() ); |
|
|
|
double* ptrs[2] = {mean.val, stddev.val}; |
|
dbuf.download(ptrs); |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////////////// |
|
// rectStdDev |
|
|
|
void cv::gpu::rectStdDev(InputArray _src, InputArray _sqr, OutputArray _dst, Rect rect, Stream& _stream) |
|
{ |
|
GpuMat src = _src.getGpuMat(); |
|
GpuMat sqr = _sqr.getGpuMat(); |
|
|
|
CV_Assert( src.type() == CV_32SC1 && sqr.type() == CV_64FC1 ); |
|
|
|
_dst.create(src.size(), CV_32FC1); |
|
GpuMat dst = _dst.getGpuMat(); |
|
|
|
NppiSize sz; |
|
sz.width = src.cols; |
|
sz.height = src.rows; |
|
|
|
NppiRect nppRect; |
|
nppRect.height = rect.height; |
|
nppRect.width = rect.width; |
|
nppRect.x = rect.x; |
|
nppRect.y = rect.y; |
|
|
|
cudaStream_t stream = StreamAccessor::getStream(_stream); |
|
|
|
NppStreamHandler h(stream); |
|
|
|
nppSafeCall( nppiRectStdDev_32s32f_C1R(src.ptr<Npp32s>(), static_cast<int>(src.step), sqr.ptr<Npp64f>(), static_cast<int>(sqr.step), |
|
dst.ptr<Npp32f>(), static_cast<int>(dst.step), sz, nppRect) ); |
|
|
|
if (stream == 0) |
|
cudaSafeCall( cudaDeviceSynchronize() ); |
|
} |
|
|
|
//////////////////////////////////////////////////////////////////////// |
|
// normalize |
|
|
|
void cv::gpu::normalize(InputArray _src, OutputArray dst, double a, double b, int norm_type, int dtype, InputArray mask, GpuMat& norm_buf, GpuMat& cvt_buf) |
|
{ |
|
GpuMat src = _src.getGpuMat(); |
|
|
|
double scale = 1, shift = 0; |
|
|
|
if (norm_type == NORM_MINMAX) |
|
{ |
|
double smin = 0, smax = 0; |
|
double dmin = std::min(a, b), dmax = std::max(a, b); |
|
gpu::minMax(src, &smin, &smax, mask, norm_buf); |
|
scale = (dmax - dmin) * (smax - smin > std::numeric_limits<double>::epsilon() ? 1.0 / (smax - smin) : 0.0); |
|
shift = dmin - smin * scale; |
|
} |
|
else if (norm_type == NORM_L2 || norm_type == NORM_L1 || norm_type == NORM_INF) |
|
{ |
|
scale = gpu::norm(src, norm_type, mask, norm_buf); |
|
scale = scale > std::numeric_limits<double>::epsilon() ? a / scale : 0.0; |
|
shift = 0; |
|
} |
|
else |
|
{ |
|
CV_Error(cv::Error::StsBadArg, "Unknown/unsupported norm type"); |
|
} |
|
|
|
if (mask.empty()) |
|
{ |
|
src.convertTo(dst, dtype, scale, shift); |
|
} |
|
else |
|
{ |
|
src.convertTo(cvt_buf, dtype, scale, shift); |
|
cvt_buf.copyTo(dst, mask); |
|
} |
|
} |
|
|
|
//////////////////////////////////////////////////////////////////////// |
|
// integral |
|
|
|
namespace cv { namespace gpu { namespace cudev |
|
{ |
|
namespace imgproc |
|
{ |
|
void shfl_integral_gpu(const PtrStepSzb& img, PtrStepSz<unsigned int> integral, cudaStream_t stream); |
|
} |
|
}}} |
|
|
|
void cv::gpu::integral(InputArray _src, OutputArray _dst, GpuMat& buffer, Stream& _stream) |
|
{ |
|
GpuMat src = _src.getGpuMat(); |
|
|
|
CV_Assert( src.type() == CV_8UC1 ); |
|
|
|
cudaStream_t stream = StreamAccessor::getStream(_stream); |
|
|
|
cv::Size whole; |
|
cv::Point offset; |
|
src.locateROI(whole, offset); |
|
|
|
if (deviceSupports(WARP_SHUFFLE_FUNCTIONS) && src.cols <= 2048 |
|
&& offset.x % 16 == 0 && ((src.cols + 63) / 64) * 64 <= (static_cast<int>(src.step) - offset.x)) |
|
{ |
|
ensureSizeIsEnough(((src.rows + 7) / 8) * 8, ((src.cols + 63) / 64) * 64, CV_32SC1, buffer); |
|
|
|
cv::gpu::cudev::imgproc::shfl_integral_gpu(src, buffer, stream); |
|
|
|
_dst.create(src.rows + 1, src.cols + 1, CV_32SC1); |
|
GpuMat dst = _dst.getGpuMat(); |
|
|
|
dst.setTo(Scalar::all(0), _stream); |
|
|
|
GpuMat inner = dst(Rect(1, 1, src.cols, src.rows)); |
|
GpuMat res = buffer(Rect(0, 0, src.cols, src.rows)); |
|
|
|
res.copyTo(inner, _stream); |
|
} |
|
else |
|
{ |
|
#ifndef HAVE_OPENCV_GPULEGACY |
|
throw_no_cuda(); |
|
#else |
|
_dst.create(src.rows + 1, src.cols + 1, CV_32SC1); |
|
GpuMat dst = _dst.getGpuMat(); |
|
|
|
NcvSize32u roiSize; |
|
roiSize.width = src.cols; |
|
roiSize.height = src.rows; |
|
|
|
cudaDeviceProp prop; |
|
cudaSafeCall( cudaGetDeviceProperties(&prop, cv::gpu::getDevice()) ); |
|
|
|
Ncv32u bufSize; |
|
ncvSafeCall( nppiStIntegralGetSize_8u32u(roiSize, &bufSize, prop) ); |
|
ensureSizeIsEnough(1, bufSize, CV_8UC1, buffer); |
|
|
|
NppStStreamHandler h(stream); |
|
|
|
ncvSafeCall( nppiStIntegral_8u32u_C1R(const_cast<Ncv8u*>(src.ptr<Ncv8u>()), static_cast<int>(src.step), |
|
dst.ptr<Ncv32u>(), static_cast<int>(dst.step), roiSize, buffer.ptr<Ncv8u>(), bufSize, prop) ); |
|
|
|
if (stream == 0) |
|
cudaSafeCall( cudaDeviceSynchronize() ); |
|
#endif |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////////////// |
|
// sqrIntegral |
|
|
|
void cv::gpu::sqrIntegral(InputArray _src, OutputArray _dst, GpuMat& buf, Stream& _stream) |
|
{ |
|
#ifndef HAVE_OPENCV_GPULEGACY |
|
(void) _src; |
|
(void) _dst; |
|
(void) _stream; |
|
throw_no_cuda(); |
|
#else |
|
GpuMat src = _src.getGpuMat(); |
|
|
|
CV_Assert( src.type() == CV_8U ); |
|
|
|
NcvSize32u roiSize; |
|
roiSize.width = src.cols; |
|
roiSize.height = src.rows; |
|
|
|
cudaDeviceProp prop; |
|
cudaSafeCall( cudaGetDeviceProperties(&prop, cv::gpu::getDevice()) ); |
|
|
|
Ncv32u bufSize; |
|
ncvSafeCall(nppiStSqrIntegralGetSize_8u64u(roiSize, &bufSize, prop)); |
|
|
|
ensureSizeIsEnough(1, bufSize, CV_8U, buf); |
|
|
|
cudaStream_t stream = StreamAccessor::getStream(_stream); |
|
|
|
NppStStreamHandler h(stream); |
|
|
|
_dst.create(src.rows + 1, src.cols + 1, CV_64F); |
|
GpuMat dst = _dst.getGpuMat(); |
|
|
|
ncvSafeCall(nppiStSqrIntegral_8u64u_C1R(const_cast<Ncv8u*>(src.ptr<Ncv8u>(0)), static_cast<int>(src.step), |
|
dst.ptr<Ncv64u>(0), static_cast<int>(dst.step), roiSize, buf.ptr<Ncv8u>(0), bufSize, prop)); |
|
|
|
if (stream == 0) |
|
cudaSafeCall( cudaDeviceSynchronize() ); |
|
#endif |
|
} |
|
|
|
#endif
|
|
|