Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

603 lines
25 KiB

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html
#include "precomp.hpp"
#include "opencl_kernels_core.hpp"
namespace cv { namespace hal {
#if CV_NEON
template<typename T> struct VMerge2;
template<typename T> struct VMerge3;
template<typename T> struct VMerge4;
#define MERGE2_KERNEL_TEMPLATE(name, data_type, reg_type, load_func, store_func) \
template<> \
struct name<data_type>{ \
void operator()(const data_type* src0, const data_type* src1, \
data_type* dst){ \
reg_type r; \
r.val[0] = load_func(src0); \
r.val[1] = load_func(src1); \
store_func(dst, r); \
} \
}
#define MERGE3_KERNEL_TEMPLATE(name, data_type, reg_type, load_func, store_func) \
template<> \
struct name<data_type>{ \
void operator()(const data_type* src0, const data_type* src1, \
const data_type* src2, data_type* dst){ \
reg_type r; \
r.val[0] = load_func(src0); \
r.val[1] = load_func(src1); \
r.val[2] = load_func(src2); \
store_func(dst, r); \
} \
}
#define MERGE4_KERNEL_TEMPLATE(name, data_type, reg_type, load_func, store_func) \
template<> \
struct name<data_type>{ \
void operator()(const data_type* src0, const data_type* src1, \
const data_type* src2, const data_type* src3, \
data_type* dst){ \
reg_type r; \
r.val[0] = load_func(src0); \
r.val[1] = load_func(src1); \
r.val[2] = load_func(src2); \
r.val[3] = load_func(src3); \
store_func(dst, r); \
} \
}
MERGE2_KERNEL_TEMPLATE(VMerge2, uchar , uint8x16x2_t, vld1q_u8 , vst2q_u8 );
MERGE2_KERNEL_TEMPLATE(VMerge2, ushort, uint16x8x2_t, vld1q_u16, vst2q_u16);
MERGE2_KERNEL_TEMPLATE(VMerge2, int , int32x4x2_t, vld1q_s32, vst2q_s32);
MERGE2_KERNEL_TEMPLATE(VMerge2, int64 , int64x1x2_t, vld1_s64 , vst2_s64 );
MERGE3_KERNEL_TEMPLATE(VMerge3, uchar , uint8x16x3_t, vld1q_u8 , vst3q_u8 );
MERGE3_KERNEL_TEMPLATE(VMerge3, ushort, uint16x8x3_t, vld1q_u16, vst3q_u16);
MERGE3_KERNEL_TEMPLATE(VMerge3, int , int32x4x3_t, vld1q_s32, vst3q_s32);
MERGE3_KERNEL_TEMPLATE(VMerge3, int64 , int64x1x3_t, vld1_s64 , vst3_s64 );
MERGE4_KERNEL_TEMPLATE(VMerge4, uchar , uint8x16x4_t, vld1q_u8 , vst4q_u8 );
MERGE4_KERNEL_TEMPLATE(VMerge4, ushort, uint16x8x4_t, vld1q_u16, vst4q_u16);
MERGE4_KERNEL_TEMPLATE(VMerge4, int , int32x4x4_t, vld1q_s32, vst4q_s32);
MERGE4_KERNEL_TEMPLATE(VMerge4, int64 , int64x1x4_t, vld1_s64 , vst4_s64 );
#elif CV_SSE2
template <typename T>
struct VMerge2
{
VMerge2() : support(false) { }
void operator()(const T *, const T *, T *) const { }
bool support;
};
template <typename T>
struct VMerge3
{
VMerge3() : support(false) { }
void operator()(const T *, const T *, const T *, T *) const { }
bool support;
};
template <typename T>
struct VMerge4
{
VMerge4() : support(false) { }
void operator()(const T *, const T *, const T *, const T *, T *) const { }
bool support;
};
#define MERGE2_KERNEL_TEMPLATE(data_type, reg_type, cast_type, _mm_interleave, flavor, se) \
template <> \
struct VMerge2<data_type> \
{ \
enum \
{ \
ELEMS_IN_VEC = 16 / sizeof(data_type) \
}; \
\
VMerge2() \
{ \
support = checkHardwareSupport(se); \
} \
\
void operator()(const data_type * src0, const data_type * src1, \
data_type * dst) const \
{ \
reg_type v_src0 = _mm_loadu_##flavor((const cast_type *)(src0)); \
reg_type v_src1 = _mm_loadu_##flavor((const cast_type *)(src0 + ELEMS_IN_VEC)); \
reg_type v_src2 = _mm_loadu_##flavor((const cast_type *)(src1)); \
reg_type v_src3 = _mm_loadu_##flavor((const cast_type *)(src1 + ELEMS_IN_VEC)); \
\
_mm_interleave(v_src0, v_src1, v_src2, v_src3); \
\
_mm_storeu_##flavor((cast_type *)(dst), v_src0); \
_mm_storeu_##flavor((cast_type *)(dst + ELEMS_IN_VEC), v_src1); \
_mm_storeu_##flavor((cast_type *)(dst + ELEMS_IN_VEC * 2), v_src2); \
_mm_storeu_##flavor((cast_type *)(dst + ELEMS_IN_VEC * 3), v_src3); \
} \
\
bool support; \
}
#define MERGE3_KERNEL_TEMPLATE(data_type, reg_type, cast_type, _mm_interleave, flavor, se) \
template <> \
struct VMerge3<data_type> \
{ \
enum \
{ \
ELEMS_IN_VEC = 16 / sizeof(data_type) \
}; \
\
VMerge3() \
{ \
support = checkHardwareSupport(se); \
} \
\
void operator()(const data_type * src0, const data_type * src1, const data_type * src2,\
data_type * dst) const \
{ \
reg_type v_src0 = _mm_loadu_##flavor((const cast_type *)(src0)); \
reg_type v_src1 = _mm_loadu_##flavor((const cast_type *)(src0 + ELEMS_IN_VEC)); \
reg_type v_src2 = _mm_loadu_##flavor((const cast_type *)(src1)); \
reg_type v_src3 = _mm_loadu_##flavor((const cast_type *)(src1 + ELEMS_IN_VEC)); \
reg_type v_src4 = _mm_loadu_##flavor((const cast_type *)(src2)); \
reg_type v_src5 = _mm_loadu_##flavor((const cast_type *)(src2 + ELEMS_IN_VEC)); \
\
_mm_interleave(v_src0, v_src1, v_src2, \
v_src3, v_src4, v_src5); \
\
_mm_storeu_##flavor((cast_type *)(dst), v_src0); \
_mm_storeu_##flavor((cast_type *)(dst + ELEMS_IN_VEC), v_src1); \
_mm_storeu_##flavor((cast_type *)(dst + ELEMS_IN_VEC * 2), v_src2); \
_mm_storeu_##flavor((cast_type *)(dst + ELEMS_IN_VEC * 3), v_src3); \
_mm_storeu_##flavor((cast_type *)(dst + ELEMS_IN_VEC * 4), v_src4); \
_mm_storeu_##flavor((cast_type *)(dst + ELEMS_IN_VEC * 5), v_src5); \
} \
\
bool support; \
}
#define MERGE4_KERNEL_TEMPLATE(data_type, reg_type, cast_type, _mm_interleave, flavor, se) \
template <> \
struct VMerge4<data_type> \
{ \
enum \
{ \
ELEMS_IN_VEC = 16 / sizeof(data_type) \
}; \
\
VMerge4() \
{ \
support = checkHardwareSupport(se); \
} \
\
void operator()(const data_type * src0, const data_type * src1, \
const data_type * src2, const data_type * src3, \
data_type * dst) const \
{ \
reg_type v_src0 = _mm_loadu_##flavor((const cast_type *)(src0)); \
reg_type v_src1 = _mm_loadu_##flavor((const cast_type *)(src0 + ELEMS_IN_VEC)); \
reg_type v_src2 = _mm_loadu_##flavor((const cast_type *)(src1)); \
reg_type v_src3 = _mm_loadu_##flavor((const cast_type *)(src1 + ELEMS_IN_VEC)); \
reg_type v_src4 = _mm_loadu_##flavor((const cast_type *)(src2)); \
reg_type v_src5 = _mm_loadu_##flavor((const cast_type *)(src2 + ELEMS_IN_VEC)); \
reg_type v_src6 = _mm_loadu_##flavor((const cast_type *)(src3)); \
reg_type v_src7 = _mm_loadu_##flavor((const cast_type *)(src3 + ELEMS_IN_VEC)); \
\
_mm_interleave(v_src0, v_src1, v_src2, v_src3, \
v_src4, v_src5, v_src6, v_src7); \
\
_mm_storeu_##flavor((cast_type *)(dst), v_src0); \
_mm_storeu_##flavor((cast_type *)(dst + ELEMS_IN_VEC), v_src1); \
_mm_storeu_##flavor((cast_type *)(dst + ELEMS_IN_VEC * 2), v_src2); \
_mm_storeu_##flavor((cast_type *)(dst + ELEMS_IN_VEC * 3), v_src3); \
_mm_storeu_##flavor((cast_type *)(dst + ELEMS_IN_VEC * 4), v_src4); \
_mm_storeu_##flavor((cast_type *)(dst + ELEMS_IN_VEC * 5), v_src5); \
_mm_storeu_##flavor((cast_type *)(dst + ELEMS_IN_VEC * 6), v_src6); \
_mm_storeu_##flavor((cast_type *)(dst + ELEMS_IN_VEC * 7), v_src7); \
} \
\
bool support; \
}
MERGE2_KERNEL_TEMPLATE( uchar, __m128i, __m128i, _mm_interleave_epi8, si128, CV_CPU_SSE2);
MERGE3_KERNEL_TEMPLATE( uchar, __m128i, __m128i, _mm_interleave_epi8, si128, CV_CPU_SSE2);
MERGE4_KERNEL_TEMPLATE( uchar, __m128i, __m128i, _mm_interleave_epi8, si128, CV_CPU_SSE2);
#if CV_SSE4_1
MERGE2_KERNEL_TEMPLATE(ushort, __m128i, __m128i, _mm_interleave_epi16, si128, CV_CPU_SSE4_1);
MERGE3_KERNEL_TEMPLATE(ushort, __m128i, __m128i, _mm_interleave_epi16, si128, CV_CPU_SSE4_1);
MERGE4_KERNEL_TEMPLATE(ushort, __m128i, __m128i, _mm_interleave_epi16, si128, CV_CPU_SSE4_1);
#endif
MERGE2_KERNEL_TEMPLATE( int, __m128, float, _mm_interleave_ps, ps, CV_CPU_SSE2);
MERGE3_KERNEL_TEMPLATE( int, __m128, float, _mm_interleave_ps, ps, CV_CPU_SSE2);
MERGE4_KERNEL_TEMPLATE( int, __m128, float, _mm_interleave_ps, ps, CV_CPU_SSE2);
#endif
template<typename T> static void
merge_( const T** src, T* dst, int len, int cn )
{
int k = cn % 4 ? cn % 4 : 4;
int i, j;
if( k == 1 )
{
const T* src0 = src[0];
for( i = j = 0; i < len; i++, j += cn )
dst[j] = src0[i];
}
else if( k == 2 )
{
const T *src0 = src[0], *src1 = src[1];
i = j = 0;
#if CV_NEON
if(cn == 2)
{
int inc_i = (sizeof(T) == 8)? 1: 16/sizeof(T);
int inc_j = 2 * inc_i;
VMerge2<T> vmerge;
for( ; i < len - inc_i; i += inc_i, j += inc_j)
vmerge(src0 + i, src1 + i, dst + j);
}
#elif CV_SSE2
if(cn == 2)
{
int inc_i = 32/sizeof(T);
int inc_j = 2 * inc_i;
VMerge2<T> vmerge;
if (vmerge.support)
for( ; i < len - inc_i; i += inc_i, j += inc_j)
vmerge(src0 + i, src1 + i, dst + j);
}
#endif
for( ; i < len; i++, j += cn )
{
dst[j] = src0[i];
dst[j+1] = src1[i];
}
}
else if( k == 3 )
{
const T *src0 = src[0], *src1 = src[1], *src2 = src[2];
i = j = 0;
#if CV_NEON
if(cn == 3)
{
int inc_i = (sizeof(T) == 8)? 1: 16/sizeof(T);
int inc_j = 3 * inc_i;
VMerge3<T> vmerge;
for( ; i < len - inc_i; i += inc_i, j += inc_j)
vmerge(src0 + i, src1 + i, src2 + i, dst + j);
}
#elif CV_SSE2
if(cn == 3)
{
int inc_i = 32/sizeof(T);
int inc_j = 3 * inc_i;
VMerge3<T> vmerge;
if (vmerge.support)
for( ; i < len - inc_i; i += inc_i, j += inc_j)
vmerge(src0 + i, src1 + i, src2 + i, dst + j);
}
#endif
for( ; i < len; i++, j += cn )
{
dst[j] = src0[i];
dst[j+1] = src1[i];
dst[j+2] = src2[i];
}
}
else
{
const T *src0 = src[0], *src1 = src[1], *src2 = src[2], *src3 = src[3];
i = j = 0;
#if CV_NEON
if(cn == 4)
{
int inc_i = (sizeof(T) == 8)? 1: 16/sizeof(T);
int inc_j = 4 * inc_i;
VMerge4<T> vmerge;
for( ; i < len - inc_i; i += inc_i, j += inc_j)
vmerge(src0 + i, src1 + i, src2 + i, src3 + i, dst + j);
}
#elif CV_SSE2
if(cn == 4)
{
int inc_i = 32/sizeof(T);
int inc_j = 4 * inc_i;
VMerge4<T> vmerge;
if (vmerge.support)
for( ; i < len - inc_i; i += inc_i, j += inc_j)
vmerge(src0 + i, src1 + i, src2 + i, src3 + i, dst + j);
}
#endif
for( ; i < len; i++, j += cn )
{
dst[j] = src0[i]; dst[j+1] = src1[i];
dst[j+2] = src2[i]; dst[j+3] = src3[i];
}
}
for( ; k < cn; k += 4 )
{
const T *src0 = src[k], *src1 = src[k+1], *src2 = src[k+2], *src3 = src[k+3];
for( i = 0, j = k; i < len; i++, j += cn )
{
dst[j] = src0[i]; dst[j+1] = src1[i];
dst[j+2] = src2[i]; dst[j+3] = src3[i];
}
}
}
void merge8u(const uchar** src, uchar* dst, int len, int cn )
{
CALL_HAL(merge8u, cv_hal_merge8u, src, dst, len, cn)
merge_(src, dst, len, cn);
}
void merge16u(const ushort** src, ushort* dst, int len, int cn )
{
CALL_HAL(merge16u, cv_hal_merge16u, src, dst, len, cn)
merge_(src, dst, len, cn);
}
void merge32s(const int** src, int* dst, int len, int cn )
{
CALL_HAL(merge32s, cv_hal_merge32s, src, dst, len, cn)
merge_(src, dst, len, cn);
}
void merge64s(const int64** src, int64* dst, int len, int cn )
{
CALL_HAL(merge64s, cv_hal_merge64s, src, dst, len, cn)
merge_(src, dst, len, cn);
}
}} // cv::hal::
typedef void (*MergeFunc)(const uchar** src, uchar* dst, int len, int cn);
static MergeFunc getMergeFunc(int depth)
{
static MergeFunc mergeTab[] =
{
(MergeFunc)GET_OPTIMIZED(cv::hal::merge8u), (MergeFunc)GET_OPTIMIZED(cv::hal::merge8u), (MergeFunc)GET_OPTIMIZED(cv::hal::merge16u), (MergeFunc)GET_OPTIMIZED(cv::hal::merge16u),
(MergeFunc)GET_OPTIMIZED(cv::hal::merge32s), (MergeFunc)GET_OPTIMIZED(cv::hal::merge32s), (MergeFunc)GET_OPTIMIZED(cv::hal::merge64s), 0
};
return mergeTab[depth];
}
#ifdef HAVE_IPP
namespace cv {
static bool ipp_merge(const Mat* mv, Mat& dst, int channels)
{
#ifdef HAVE_IPP_IW
CV_INSTRUMENT_REGION_IPP()
if(channels != 3 && channels != 4)
return false;
if(mv[0].dims <= 2)
{
IppiSize size = ippiSize(mv[0].size());
const void *srcPtrs[4] = {NULL};
size_t srcStep = mv[0].step;
for(int i = 0; i < channels; i++)
{
srcPtrs[i] = mv[i].ptr();
if(srcStep != mv[i].step)
return false;
}
return CV_INSTRUMENT_FUN_IPP(llwiCopyMerge, srcPtrs, (int)srcStep, dst.ptr(), (int)dst.step, size, (int)mv[0].elemSize1(), channels, 0) >= 0;
}
else
{
const Mat *arrays[5] = {NULL};
uchar *ptrs[5] = {NULL};
arrays[0] = &dst;
for(int i = 1; i < channels; i++)
{
arrays[i] = &mv[i-1];
}
NAryMatIterator it(arrays, ptrs);
IppiSize size = { (int)it.size, 1 };
for( size_t i = 0; i < it.nplanes; i++, ++it )
{
if(CV_INSTRUMENT_FUN_IPP(llwiCopyMerge, (const void**)&ptrs[1], 0, ptrs[0], 0, size, (int)mv[0].elemSize1(), channels, 0) < 0)
return false;
}
return true;
}
#else
CV_UNUSED(dst); CV_UNUSED(mv); CV_UNUSED(channels);
return false;
#endif
}
}
#endif
void cv::merge(const Mat* mv, size_t n, OutputArray _dst)
{
CV_INSTRUMENT_REGION()
CV_Assert( mv && n > 0 );
int depth = mv[0].depth();
bool allch1 = true;
int k, cn = 0;
size_t i;
for( i = 0; i < n; i++ )
{
CV_Assert(mv[i].size == mv[0].size && mv[i].depth() == depth);
allch1 = allch1 && mv[i].channels() == 1;
cn += mv[i].channels();
}
CV_Assert( 0 < cn && cn <= CV_CN_MAX );
_dst.create(mv[0].dims, mv[0].size, CV_MAKETYPE(depth, cn));
Mat dst = _dst.getMat();
if( n == 1 )
{
mv[0].copyTo(dst);
return;
}
CV_IPP_RUN_FAST(ipp_merge(mv, dst, (int)n));
if( !allch1 )
{
AutoBuffer<int> pairs(cn*2);
int j, ni=0;
for( i = 0, j = 0; i < n; i++, j += ni )
{
ni = mv[i].channels();
for( k = 0; k < ni; k++ )
{
pairs[(j+k)*2] = j + k;
pairs[(j+k)*2+1] = j + k;
}
}
mixChannels( mv, n, &dst, 1, &pairs[0], cn );
return;
}
MergeFunc func = getMergeFunc(depth);
CV_Assert( func != 0 );
size_t esz = dst.elemSize(), esz1 = dst.elemSize1();
size_t blocksize0 = (int)((BLOCK_SIZE + esz-1)/esz);
AutoBuffer<uchar> _buf((cn+1)*(sizeof(Mat*) + sizeof(uchar*)) + 16);
const Mat** arrays = (const Mat**)(uchar*)_buf;
uchar** ptrs = (uchar**)alignPtr(arrays + cn + 1, 16);
arrays[0] = &dst;
for( k = 0; k < cn; k++ )
arrays[k+1] = &mv[k];
NAryMatIterator it(arrays, ptrs, cn+1);
size_t total = (int)it.size;
size_t blocksize = std::min((size_t)CV_SPLIT_MERGE_MAX_BLOCK_SIZE(cn), cn <= 4 ? total : std::min(total, blocksize0));
for( i = 0; i < it.nplanes; i++, ++it )
{
for( size_t j = 0; j < total; j += blocksize )
{
size_t bsz = std::min(total - j, blocksize);
func( (const uchar**)&ptrs[1], ptrs[0], (int)bsz, cn );
if( j + blocksize < total )
{
ptrs[0] += bsz*esz;
for( int t = 0; t < cn; t++ )
ptrs[t+1] += bsz*esz1;
}
}
}
}
#ifdef HAVE_OPENCL
namespace cv {
static bool ocl_merge( InputArrayOfArrays _mv, OutputArray _dst )
{
std::vector<UMat> src, ksrc;
_mv.getUMatVector(src);
CV_Assert(!src.empty());
int type = src[0].type(), depth = CV_MAT_DEPTH(type),
rowsPerWI = ocl::Device::getDefault().isIntel() ? 4 : 1;
Size size = src[0].size();
for (size_t i = 0, srcsize = src.size(); i < srcsize; ++i)
{
int itype = src[i].type(), icn = CV_MAT_CN(itype), idepth = CV_MAT_DEPTH(itype),
esz1 = CV_ELEM_SIZE1(idepth);
if (src[i].dims > 2)
return false;
CV_Assert(size == src[i].size() && depth == idepth);
for (int cn = 0; cn < icn; ++cn)
{
UMat tsrc = src[i];
tsrc.offset += cn * esz1;
ksrc.push_back(tsrc);
}
}
int dcn = (int)ksrc.size();
String srcargs, processelem, cndecl, indexdecl;
for (int i = 0; i < dcn; ++i)
{
srcargs += format("DECLARE_SRC_PARAM(%d)", i);
processelem += format("PROCESS_ELEM(%d)", i);
indexdecl += format("DECLARE_INDEX(%d)", i);
cndecl += format(" -D scn%d=%d", i, ksrc[i].channels());
}
ocl::Kernel k("merge", ocl::core::split_merge_oclsrc,
format("-D OP_MERGE -D cn=%d -D T=%s -D DECLARE_SRC_PARAMS_N=%s"
" -D DECLARE_INDEX_N=%s -D PROCESS_ELEMS_N=%s%s",
dcn, ocl::memopTypeToStr(depth), srcargs.c_str(),
indexdecl.c_str(), processelem.c_str(), cndecl.c_str()));
if (k.empty())
return false;
_dst.create(size, CV_MAKE_TYPE(depth, dcn));
UMat dst = _dst.getUMat();
int argidx = 0;
for (int i = 0; i < dcn; ++i)
argidx = k.set(argidx, ocl::KernelArg::ReadOnlyNoSize(ksrc[i]));
argidx = k.set(argidx, ocl::KernelArg::WriteOnly(dst));
k.set(argidx, rowsPerWI);
size_t globalsize[2] = { (size_t)dst.cols, ((size_t)dst.rows + rowsPerWI - 1) / rowsPerWI };
return k.run(2, globalsize, NULL, false);
}
}
#endif
void cv::merge(InputArrayOfArrays _mv, OutputArray _dst)
{
CV_INSTRUMENT_REGION()
CV_OCL_RUN(_mv.isUMatVector() && _dst.isUMat(),
ocl_merge(_mv, _dst))
std::vector<Mat> mv;
_mv.getMatVector(mv);
merge(!mv.empty() ? &mv[0] : 0, mv.size(), _dst);
}