mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
120 lines
3.5 KiB
120 lines
3.5 KiB
#/usr/bin/env python |
|
|
|
''' |
|
Wiener deconvolution. |
|
|
|
Sample shows how DFT can be used to perform Weiner deconvolution [1] |
|
of an image with user-defined point spread function (PSF) |
|
|
|
Usage: |
|
deconvolution.py [--circle] |
|
[--angle <degrees>] |
|
[--d <diameter>] |
|
[--snr <signal/noise ratio in db>] |
|
[<input image>] |
|
|
|
Use sliders to adjust PSF paramitiers. |
|
Keys: |
|
SPACE - switch btw linear/cirular PSF |
|
ESC - exit |
|
|
|
Examples: |
|
deconvolution.py --angle 135 --d 22 data/licenseplate_motion.jpg |
|
(image source: http://www.topazlabs.com/infocus/_images/licenseplate_compare.jpg) |
|
|
|
deconvolution.py --angle 86 --d 31 data/text_motion.jpg |
|
deconvolution.py --circle --d 19 data/text_defocus.jpg |
|
(image source: compact digital photo camera, no artificial distortion) |
|
|
|
|
|
[1] http://en.wikipedia.org/wiki/Wiener_deconvolution |
|
''' |
|
|
|
import numpy as np |
|
import cv2 |
|
from common import nothing |
|
|
|
|
|
def blur_edge(img, d=31): |
|
h, w = img.shape[:2] |
|
img_pad = cv2.copyMakeBorder(img, d, d, d, d, cv2.BORDER_WRAP) |
|
img_blur = cv2.GaussianBlur(img_pad, (2*d+1, 2*d+1), -1)[d:-d,d:-d] |
|
y, x = np.indices((h, w)) |
|
dist = np.dstack([x, w-x-1, y, h-y-1]).min(-1) |
|
w = np.minimum(np.float32(dist)/d, 1.0) |
|
return img*w + img_blur*(1-w) |
|
|
|
def motion_kernel(angle, d, sz=65): |
|
kern = np.ones((1, d), np.float32) |
|
c, s = np.cos(angle), np.sin(angle) |
|
A = np.float32([[c, -s, 0], [s, c, 0]]) |
|
sz2 = sz // 2 |
|
A[:,2] = (sz2, sz2) - np.dot(A[:,:2], ((d-1)*0.5, 0)) |
|
kern = cv2.warpAffine(kern, A, (sz, sz), flags=cv2.INTER_CUBIC) |
|
return kern |
|
|
|
def defocus_kernel(d, sz=65): |
|
kern = np.zeros((sz, sz), np.uint8) |
|
cv2.circle(kern, (sz, sz), d, 255, -1, cv2.CV_AA, shift=1) |
|
kern = np.float32(kern) / 255.0 |
|
return kern |
|
|
|
|
|
if __name__ == '__main__': |
|
print __doc__ |
|
import sys, getopt |
|
opts, args = getopt.getopt(sys.argv[1:], '', ['circle', 'angle=', 'd=', 'snr=']) |
|
opts = dict(opts) |
|
try: fn = args[0] |
|
except: fn = 'data/licenseplate_motion.jpg' |
|
|
|
win = 'deconvolution' |
|
|
|
img = cv2.imread(fn, 0) |
|
img = np.float32(img)/255.0 |
|
cv2.imshow('input', img) |
|
|
|
img = blur_edge(img) |
|
IMG = cv2.dft(img, flags=cv2.DFT_COMPLEX_OUTPUT) |
|
|
|
defocus = '--circle' in opts |
|
|
|
def update(_): |
|
ang = np.deg2rad( cv2.getTrackbarPos('angle', win) ) |
|
d = cv2.getTrackbarPos('d', win) |
|
noise = 10**(-0.1*cv2.getTrackbarPos('SNR (db)', win)) |
|
|
|
if defocus: |
|
psf = defocus_kernel(d) |
|
else: |
|
psf = motion_kernel(ang, d) |
|
cv2.imshow('psf', psf) |
|
|
|
psf /= psf.sum() |
|
psf_pad = np.zeros_like(img) |
|
kh, kw = psf.shape |
|
psf_pad[:kh, :kw] = psf |
|
PSF = cv2.dft(psf_pad, flags=cv2.DFT_COMPLEX_OUTPUT, nonzeroRows = kh) |
|
PSF2 = (PSF**2).sum(-1) |
|
iPSF = PSF / (PSF2 + noise)[...,np.newaxis] |
|
RES = cv2.mulSpectrums(IMG, iPSF, 0) |
|
res = cv2.idft(RES, flags=cv2.DFT_SCALE | cv2.DFT_REAL_OUTPUT ) |
|
res = np.roll(res, -kh//2, 0) |
|
res = np.roll(res, -kw//2, 1) |
|
cv2.imshow(win, res) |
|
|
|
cv2.namedWindow(win) |
|
cv2.namedWindow('psf', 0) |
|
cv2.createTrackbar('angle', win, int(opts.get('--angle', 135)), 180, update) |
|
cv2.createTrackbar('d', win, int(opts.get('--d', 22)), 50, update) |
|
cv2.createTrackbar('SNR (db)', win, int(opts.get('--snr', 25)), 50, update) |
|
update(None) |
|
|
|
while True: |
|
ch = cv2.waitKey() |
|
if ch == 27: |
|
break |
|
if ch == ord(' '): |
|
defocus = not defocus |
|
update(None) |
|
|
|
|