mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
134 lines
4.4 KiB
134 lines
4.4 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// Intel License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of Intel Corporation may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
#include "precomp.hpp" |
|
|
|
namespace cv |
|
{ |
|
|
|
KalmanFilter::KalmanFilter() {} |
|
KalmanFilter::KalmanFilter(int dynamParams, int measureParams, int controlParams, int type) |
|
{ |
|
init(dynamParams, measureParams, controlParams, type); |
|
} |
|
|
|
void KalmanFilter::init(int DP, int MP, int CP, int type) |
|
{ |
|
CV_Assert( DP > 0 && MP > 0 ); |
|
CV_Assert( type == CV_32F || type == CV_64F ); |
|
CP = std::max(CP, 0); |
|
|
|
statePre = Mat::zeros(DP, 1, type); |
|
statePost = Mat::zeros(DP, 1, type); |
|
transitionMatrix = Mat::eye(DP, DP, type); |
|
|
|
processNoiseCov = Mat::eye(DP, DP, type); |
|
measurementMatrix = Mat::zeros(MP, DP, type); |
|
measurementNoiseCov = Mat::eye(MP, MP, type); |
|
|
|
errorCovPre = Mat::zeros(DP, DP, type); |
|
errorCovPost = Mat::zeros(DP, DP, type); |
|
gain = Mat::zeros(DP, MP, type); |
|
|
|
if( CP > 0 ) |
|
controlMatrix = Mat::zeros(DP, CP, type); |
|
else |
|
controlMatrix.release(); |
|
|
|
temp1.create(DP, DP, type); |
|
temp2.create(MP, DP, type); |
|
temp3.create(MP, MP, type); |
|
temp4.create(MP, DP, type); |
|
temp5.create(MP, 1, type); |
|
} |
|
|
|
const Mat& KalmanFilter::predict(const Mat& control) |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
|
|
// update the state: x'(k) = A*x(k) |
|
statePre = transitionMatrix*statePost; |
|
|
|
if( !control.empty() ) |
|
// x'(k) = x'(k) + B*u(k) |
|
statePre += controlMatrix*control; |
|
|
|
// update error covariance matrices: temp1 = A*P(k) |
|
temp1 = transitionMatrix*errorCovPost; |
|
|
|
// P'(k) = temp1*At + Q |
|
gemm(temp1, transitionMatrix, 1, processNoiseCov, 1, errorCovPre, GEMM_2_T); |
|
|
|
// handle the case when there will be measurement before the next predict. |
|
statePre.copyTo(statePost); |
|
errorCovPre.copyTo(errorCovPost); |
|
|
|
return statePre; |
|
} |
|
|
|
const Mat& KalmanFilter::correct(const Mat& measurement) |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
|
|
// temp2 = H*P'(k) |
|
temp2 = measurementMatrix * errorCovPre; |
|
|
|
// temp3 = temp2*Ht + R |
|
gemm(temp2, measurementMatrix, 1, measurementNoiseCov, 1, temp3, GEMM_2_T); |
|
|
|
// temp4 = inv(temp3)*temp2 = Kt(k) |
|
solve(temp3, temp2, temp4, DECOMP_SVD); |
|
|
|
// K(k) |
|
gain = temp4.t(); |
|
|
|
// temp5 = z(k) - H*x'(k) |
|
temp5 = measurement - measurementMatrix*statePre; |
|
|
|
// x(k) = x'(k) + K(k)*temp5 |
|
statePost = statePre + gain*temp5; |
|
|
|
// P(k) = P'(k) - K(k)*temp2 |
|
errorCovPost = errorCovPre - gain*temp2; |
|
|
|
return statePost; |
|
} |
|
|
|
}
|
|
|