mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1065 lines
36 KiB
1065 lines
36 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "test_precomp.hpp" |
|
|
|
#include <fstream> |
|
#include <sstream> |
|
#include <iostream> |
|
|
|
using namespace cv; |
|
using namespace std; |
|
|
|
static |
|
bool mats_equal(const Mat& lhs, const Mat& rhs) |
|
{ |
|
if (lhs.channels() != rhs.channels() || |
|
lhs.depth() != rhs.depth() || |
|
lhs.size().height != rhs.size().height || |
|
lhs.size().width != rhs.size().width) |
|
{ |
|
return false; |
|
} |
|
|
|
Mat diff = (lhs != rhs); |
|
const Scalar s = sum(diff); |
|
for (int i = 0; i < s.channels; ++i) |
|
{ |
|
if (s[i] != 0) |
|
{ |
|
return false; |
|
} |
|
} |
|
|
|
return true; |
|
} |
|
|
|
static |
|
bool imread_compare(const string& filepath, int flags = IMREAD_COLOR) |
|
{ |
|
vector<Mat> pages; |
|
if (!imreadmulti(filepath, pages, flags) || |
|
pages.empty()) |
|
{ |
|
return false; |
|
} |
|
|
|
const Mat single = imread(filepath, flags); |
|
return mats_equal(single, pages[0]); |
|
} |
|
|
|
TEST(Imgcodecs_imread, regression) |
|
{ |
|
const char* const filenames[] = |
|
{ |
|
#ifdef HAVE_JASPER |
|
"Rome.jp2", |
|
#endif |
|
#ifdef HAVE_GDCM |
|
"int16-mono1.dcm", |
|
"uint8-mono2.dcm", |
|
"uint16-mono2.dcm", |
|
"uint8-rgb.dcm", |
|
#endif |
|
"color_palette_alpha.png", |
|
"multipage.tif", |
|
"rle.hdr", |
|
"ordinary.bmp", |
|
"rle8.bmp", |
|
"test_1_c1.jpg" |
|
}; |
|
|
|
const string folder = string(cvtest::TS::ptr()->get_data_path()) + "/readwrite/"; |
|
|
|
for (size_t i = 0; i < sizeof(filenames) / sizeof(filenames[0]); ++i) |
|
{ |
|
const string path = folder + string(filenames[i]); |
|
ASSERT_TRUE(imread_compare(path, IMREAD_UNCHANGED)); |
|
ASSERT_TRUE(imread_compare(path, IMREAD_GRAYSCALE)); |
|
ASSERT_TRUE(imread_compare(path, IMREAD_COLOR)); |
|
ASSERT_TRUE(imread_compare(path, IMREAD_ANYDEPTH)); |
|
ASSERT_TRUE(imread_compare(path, IMREAD_ANYCOLOR)); |
|
const string ext = path.substr( path.length() - 3 ); |
|
if ( ext != "hdr" && ext != "dcm" ) |
|
{ |
|
// GDAL does not support hdr nor dcm |
|
ASSERT_TRUE(imread_compare(path, IMREAD_LOAD_GDAL)); |
|
} |
|
} |
|
} |
|
|
|
template<class T> |
|
string to_string(T i) |
|
{ |
|
stringstream ss; |
|
string s; |
|
ss << i; |
|
s = ss.str(); |
|
|
|
return s; |
|
} |
|
|
|
|
|
/** |
|
* Test for check whether reading exif orientation tag was processed successfully or not |
|
* The test info is the set of 8 images named testExifRotate_{1 to 8}.jpg |
|
* The test image is the square 10x10 points divided by four sub-squares: |
|
* (R corresponds to Red, G to Green, B to Blue, W to white) |
|
* --------- --------- |
|
* | R | G | | G | R | |
|
* |-------| - (tag 1) |-------| - (tag 2) |
|
* | B | W | | W | B | |
|
* --------- --------- |
|
* |
|
* --------- --------- |
|
* | W | B | | B | W | |
|
* |-------| - (tag 3) |-------| - (tag 4) |
|
* | G | R | | R | G | |
|
* --------- --------- |
|
* |
|
* --------- --------- |
|
* | R | B | | G | W | |
|
* |-------| - (tag 5) |-------| - (tag 6) |
|
* | G | W | | R | B | |
|
* --------- --------- |
|
* |
|
* --------- --------- |
|
* | W | G | | B | R | |
|
* |-------| - (tag 7) |-------| - (tag 8) |
|
* | B | R | | W | G | |
|
* --------- --------- |
|
* |
|
* |
|
* Every image contains exif field with orientation tag (0x112) |
|
* After reading each image the corresponding matrix must be read as |
|
* --------- |
|
* | R | G | |
|
* |-------| |
|
* | B | W | |
|
* --------- |
|
* |
|
*/ |
|
class CV_GrfmtJpegExifOrientationTest : public cvtest::BaseTest |
|
{ |
|
public: |
|
void run(int) |
|
{ |
|
try |
|
{ |
|
for( int i = 1; i <= 8; ++i) |
|
{ |
|
string fileName = "readwrite/testExifOrientation_" + to_string(i) + ".jpg"; |
|
m_img = imread(string(ts->get_data_path()) + fileName); |
|
if( !m_img.data ) |
|
{ |
|
ts->set_failed_test_info(cvtest::TS::FAIL_MISSING_TEST_DATA); |
|
} |
|
ts->printf(cvtest::TS::LOG, "start reading image\t%s\n", fileName.c_str()); |
|
if( !checkOrientation() ) |
|
{ |
|
ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH); |
|
} |
|
} |
|
|
|
} |
|
catch(...) |
|
{ |
|
ts->set_failed_test_info(cvtest::TS::FAIL_EXCEPTION); |
|
} |
|
} |
|
private: |
|
bool checkOrientation(); |
|
Mat m_img; |
|
}; |
|
|
|
|
|
bool CV_GrfmtJpegExifOrientationTest::checkOrientation() |
|
{ |
|
Vec3b vec; |
|
int red = 0; |
|
int green = 0; |
|
int blue = 0; |
|
|
|
const int colorThresholdHigh = 250; |
|
const int colorThresholdLow = 5; |
|
|
|
//Checking the first quadrant (with supposed red) |
|
vec = m_img.at<Vec3b>(2, 2); //some point inside the square |
|
red = vec.val[2]; |
|
green = vec.val[1]; |
|
blue = vec.val[0]; |
|
|
|
ts->printf(cvtest::TS::LOG, "RED QUADRANT:\n"); |
|
ts->printf(cvtest::TS::LOG, "Red calculated:\t\t%d\n", red); |
|
ts->printf(cvtest::TS::LOG, "Green calculated:\t%d\n", green); |
|
ts->printf(cvtest::TS::LOG, "Blue calculated:\t%d\n", blue); |
|
if( red < colorThresholdHigh ) return false; |
|
if( blue > colorThresholdLow ) return false; |
|
if( green > colorThresholdLow ) return false; |
|
|
|
//Checking the second quadrant (with supposed green) |
|
vec = m_img.at<Vec3b>(2, 7); //some point inside the square |
|
red = vec.val[2]; |
|
green = vec.val[1]; |
|
blue = vec.val[0]; |
|
ts->printf(cvtest::TS::LOG, "GREEN QUADRANT:\n"); |
|
ts->printf(cvtest::TS::LOG, "Red calculated:\t\t%d\n", red); |
|
ts->printf(cvtest::TS::LOG, "Green calculated:\t%d\n", green); |
|
ts->printf(cvtest::TS::LOG, "Blue calculated:\t%d\n", blue); |
|
if( green < colorThresholdHigh ) return false; |
|
if( red > colorThresholdLow ) return false; |
|
if( blue > colorThresholdLow ) return false; |
|
|
|
//Checking the third quadrant (with supposed blue) |
|
vec = m_img.at<Vec3b>(7, 2); //some point inside the square |
|
red = vec.val[2]; |
|
green = vec.val[1]; |
|
blue = vec.val[0]; |
|
ts->printf(cvtest::TS::LOG, "BLUE QUADRANT:\n"); |
|
ts->printf(cvtest::TS::LOG, "Red calculated:\t\t%d\n", red); |
|
ts->printf(cvtest::TS::LOG, "Green calculated:\t%d\n", green); |
|
ts->printf(cvtest::TS::LOG, "Blue calculated:\t%d\n", blue); |
|
if( blue < colorThresholdHigh ) return false; |
|
if( red > colorThresholdLow ) return false; |
|
if( green > colorThresholdLow ) return false; |
|
|
|
return true; |
|
} |
|
|
|
TEST(Imgcodecs_jpeg_exif, setOrientation) |
|
{ |
|
CV_GrfmtJpegExifOrientationTest test; |
|
test.safe_run(); |
|
} |
|
|
|
#ifdef HAVE_JASPER |
|
TEST(Imgcodecs_jasper, regression) |
|
{ |
|
const string folder = string(cvtest::TS::ptr()->get_data_path()) + "/readwrite/"; |
|
|
|
ASSERT_TRUE(imread_compare(folder + "Bretagne2.jp2", IMREAD_COLOR)); |
|
ASSERT_TRUE(imread_compare(folder + "Bretagne2.jp2", IMREAD_GRAYSCALE)); |
|
ASSERT_TRUE(imread_compare(folder + "Grey.jp2", IMREAD_COLOR)); |
|
ASSERT_TRUE(imread_compare(folder + "Grey.jp2", IMREAD_GRAYSCALE)); |
|
} |
|
#endif |
|
|
|
class CV_GrfmtWriteBigImageTest : public cvtest::BaseTest |
|
{ |
|
public: |
|
void run(int) |
|
{ |
|
try |
|
{ |
|
ts->printf(cvtest::TS::LOG, "start reading big image\n"); |
|
Mat img = imread(string(ts->get_data_path()) + "readwrite/read.png"); |
|
ts->printf(cvtest::TS::LOG, "finish reading big image\n"); |
|
if (img.empty()) ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA); |
|
ts->printf(cvtest::TS::LOG, "start writing big image\n"); |
|
imwrite(cv::tempfile(".png"), img); |
|
ts->printf(cvtest::TS::LOG, "finish writing big image\n"); |
|
} |
|
catch(...) |
|
{ |
|
ts->set_failed_test_info(cvtest::TS::FAIL_EXCEPTION); |
|
} |
|
ts->set_failed_test_info(cvtest::TS::OK); |
|
} |
|
}; |
|
|
|
string ext_from_int(int ext) |
|
{ |
|
#ifdef HAVE_PNG |
|
if (ext == 0) return ".png"; |
|
#endif |
|
if (ext == 1) return ".bmp"; |
|
if (ext == 2) return ".pgm"; |
|
#ifdef HAVE_TIFF |
|
if (ext == 3) return ".tiff"; |
|
#endif |
|
if (ext == 4) return ".pam"; |
|
return ""; |
|
} |
|
|
|
class CV_GrfmtWriteSequenceImageTest : public cvtest::BaseTest |
|
{ |
|
public: |
|
void run(int) |
|
{ |
|
try |
|
{ |
|
const int img_r = 640; |
|
const int img_c = 480; |
|
|
|
for (int k = 1; k <= 5; ++k) |
|
{ |
|
for (int ext = 0; ext < 5; ++ext) // 0 - png, 1 - bmp, 2 - pgm, 3 - tiff |
|
{ |
|
if(ext_from_int(ext).empty()) |
|
continue; |
|
for (int num_channels = 1; num_channels <= 4; num_channels++) |
|
{ |
|
if (num_channels == 2) continue; |
|
if (num_channels == 4 && ext!=3 /*TIFF*/) continue; |
|
|
|
ts->printf(ts->LOG, "image type depth:%d channels:%d ext: %s\n", CV_8U, num_channels, ext_from_int(ext).c_str()); |
|
Mat img(img_r * k, img_c * k, CV_MAKETYPE(CV_8U, num_channels), Scalar::all(0)); |
|
circle(img, Point2i((img_c * k) / 2, (img_r * k) / 2), std::min((img_r * k), (img_c * k)) / 4 , Scalar::all(255)); |
|
|
|
string img_path = cv::tempfile(ext_from_int(ext).c_str()); |
|
ts->printf(ts->LOG, "writing image : %s\n", img_path.c_str()); |
|
imwrite(img_path, img); |
|
|
|
ts->printf(ts->LOG, "reading test image : %s\n", img_path.c_str()); |
|
Mat img_test = imread(img_path, IMREAD_UNCHANGED); |
|
|
|
if (img_test.empty()) ts->set_failed_test_info(ts->FAIL_MISMATCH); |
|
|
|
CV_Assert(img.size() == img_test.size()); |
|
CV_Assert(img.type() == img_test.type()); |
|
CV_Assert(num_channels == img_test.channels()); |
|
|
|
double n = cvtest::norm(img, img_test, NORM_L2); |
|
if ( n > 1.0) |
|
{ |
|
ts->printf(ts->LOG, "norm = %f \n", n); |
|
ts->set_failed_test_info(ts->FAIL_MISMATCH); |
|
} |
|
} |
|
} |
|
|
|
#ifdef HAVE_JPEG |
|
for (int num_channels = 1; num_channels <= 3; num_channels+=2) |
|
{ |
|
// jpeg |
|
ts->printf(ts->LOG, "image type depth:%d channels:%d ext: %s\n", CV_8U, num_channels, ".jpg"); |
|
Mat img(img_r * k, img_c * k, CV_MAKETYPE(CV_8U, num_channels), Scalar::all(0)); |
|
circle(img, Point2i((img_c * k) / 2, (img_r * k) / 2), std::min((img_r * k), (img_c * k)) / 4 , Scalar::all(255)); |
|
|
|
string filename = cv::tempfile(".jpg"); |
|
imwrite(filename, img); |
|
ts->printf(ts->LOG, "reading test image : %s\n", filename.c_str()); |
|
Mat img_test = imread(filename, IMREAD_UNCHANGED); |
|
|
|
if (img_test.empty()) ts->set_failed_test_info(ts->FAIL_MISMATCH); |
|
|
|
CV_Assert(img.size() == img_test.size()); |
|
CV_Assert(img.type() == img_test.type()); |
|
|
|
// JPEG format does not provide 100% accuracy |
|
// using fuzzy image comparison |
|
double n = cvtest::norm(img, img_test, NORM_L1); |
|
double expected = 0.05 * img.size().area(); |
|
if ( n > expected) |
|
{ |
|
ts->printf(ts->LOG, "norm = %f > expected = %f \n", n, expected); |
|
ts->set_failed_test_info(ts->FAIL_MISMATCH); |
|
} |
|
} |
|
#endif |
|
|
|
#ifdef HAVE_TIFF |
|
for (int num_channels = 1; num_channels <= 4; num_channels++) |
|
{ |
|
if (num_channels == 2) continue; |
|
// tiff |
|
ts->printf(ts->LOG, "image type depth:%d channels:%d ext: %s\n", CV_16U, num_channels, ".tiff"); |
|
Mat img(img_r * k, img_c * k, CV_MAKETYPE(CV_16U, num_channels), Scalar::all(0)); |
|
circle(img, Point2i((img_c * k) / 2, (img_r * k) / 2), std::min((img_r * k), (img_c * k)) / 4 , Scalar::all(255)); |
|
|
|
string filename = cv::tempfile(".tiff"); |
|
imwrite(filename, img); |
|
ts->printf(ts->LOG, "reading test image : %s\n", filename.c_str()); |
|
Mat img_test = imread(filename, IMREAD_UNCHANGED); |
|
|
|
if (img_test.empty()) ts->set_failed_test_info(ts->FAIL_MISMATCH); |
|
|
|
CV_Assert(img.size() == img_test.size()); |
|
|
|
ts->printf(ts->LOG, "img : %d ; %d \n", img.channels(), img.depth()); |
|
ts->printf(ts->LOG, "img_test : %d ; %d \n", img_test.channels(), img_test.depth()); |
|
|
|
CV_Assert(img.type() == img_test.type()); |
|
|
|
|
|
double n = cvtest::norm(img, img_test, NORM_L2); |
|
if ( n > 1.0) |
|
{ |
|
ts->printf(ts->LOG, "norm = %f \n", n); |
|
ts->set_failed_test_info(ts->FAIL_MISMATCH); |
|
} |
|
} |
|
#endif |
|
} |
|
} |
|
catch(const cv::Exception & e) |
|
{ |
|
ts->printf(ts->LOG, "Exception: %s\n" , e.what()); |
|
ts->set_failed_test_info(ts->FAIL_MISMATCH); |
|
} |
|
} |
|
}; |
|
|
|
class CV_GrfmtReadBMPRLE8Test : public cvtest::BaseTest |
|
{ |
|
public: |
|
void run(int) |
|
{ |
|
try |
|
{ |
|
Mat rle = imread(string(ts->get_data_path()) + "readwrite/rle8.bmp"); |
|
Mat bmp = imread(string(ts->get_data_path()) + "readwrite/ordinary.bmp"); |
|
if (cvtest::norm(rle-bmp, NORM_L2)>1.e-10) |
|
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY); |
|
} |
|
catch(...) |
|
{ |
|
ts->set_failed_test_info(cvtest::TS::FAIL_EXCEPTION); |
|
} |
|
ts->set_failed_test_info(cvtest::TS::OK); |
|
} |
|
}; |
|
|
|
|
|
#ifdef HAVE_PNG |
|
TEST(Imgcodecs_Image, write_big) { CV_GrfmtWriteBigImageTest test; test.safe_run(); } |
|
#endif |
|
|
|
TEST(Imgcodecs_Image, write_imageseq) { CV_GrfmtWriteSequenceImageTest test; test.safe_run(); } |
|
|
|
TEST(Imgcodecs_Image, read_bmp_rle8) { CV_GrfmtReadBMPRLE8Test test; test.safe_run(); } |
|
|
|
#ifdef HAVE_PNG |
|
class CV_GrfmtPNGEncodeTest : public cvtest::BaseTest |
|
{ |
|
public: |
|
void run(int) |
|
{ |
|
try |
|
{ |
|
vector<uchar> buff; |
|
Mat im = Mat::zeros(1000,1000, CV_8U); |
|
//randu(im, 0, 256); |
|
vector<int> param; |
|
param.push_back(IMWRITE_PNG_COMPRESSION); |
|
param.push_back(3); //default(3) 0-9. |
|
cv::imencode(".png" ,im ,buff, param); |
|
|
|
// hangs |
|
Mat im2 = imdecode(buff,IMREAD_ANYDEPTH); |
|
} |
|
catch(...) |
|
{ |
|
ts->set_failed_test_info(cvtest::TS::FAIL_EXCEPTION); |
|
} |
|
ts->set_failed_test_info(cvtest::TS::OK); |
|
} |
|
}; |
|
|
|
TEST(Imgcodecs_Image, encode_png) { CV_GrfmtPNGEncodeTest test; test.safe_run(); } |
|
|
|
TEST(Imgcodecs_ImreadVSCvtColor, regression) |
|
{ |
|
cvtest::TS& ts = *cvtest::TS::ptr(); |
|
|
|
const int MAX_MEAN_DIFF = 1; |
|
const int MAX_ABS_DIFF = 10; |
|
|
|
string imgName = string(ts.get_data_path()) + "/../cv/shared/lena.png"; |
|
Mat original_image = imread(imgName); |
|
Mat gray_by_codec = imread(imgName, 0); |
|
Mat gray_by_cvt; |
|
|
|
cvtColor(original_image, gray_by_cvt, CV_BGR2GRAY); |
|
|
|
Mat diff; |
|
absdiff(gray_by_codec, gray_by_cvt, diff); |
|
|
|
double actual_avg_diff = (double)mean(diff)[0]; |
|
double actual_maxval, actual_minval; |
|
minMaxLoc(diff, &actual_minval, &actual_maxval); |
|
//printf("actual avg = %g, actual maxdiff = %g, npixels = %d\n", actual_avg_diff, actual_maxval, (int)diff.total()); |
|
|
|
EXPECT_LT(actual_avg_diff, MAX_MEAN_DIFF); |
|
EXPECT_LT(actual_maxval, MAX_ABS_DIFF); |
|
} |
|
|
|
//Test OpenCV issue 3075 is solved |
|
class CV_GrfmtReadPNGColorPaletteWithAlphaTest : public cvtest::BaseTest |
|
{ |
|
public: |
|
void run(int) |
|
{ |
|
try |
|
{ |
|
// First Test : Read PNG with alpha, imread flag -1 |
|
Mat img = imread(string(ts->get_data_path()) + "readwrite/color_palette_alpha.png",-1); |
|
if (img.empty()) ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA); |
|
|
|
ASSERT_TRUE(img.channels() == 4); |
|
|
|
unsigned char* img_data = img.ptr(); |
|
|
|
// Verification first pixel is red in BGRA |
|
ASSERT_TRUE(img_data[0] == 0x00); |
|
ASSERT_TRUE(img_data[1] == 0x00); |
|
ASSERT_TRUE(img_data[2] == 0xFF); |
|
ASSERT_TRUE(img_data[3] == 0xFF); |
|
|
|
// Verification second pixel is red in BGRA |
|
ASSERT_TRUE(img_data[4] == 0x00); |
|
ASSERT_TRUE(img_data[5] == 0x00); |
|
ASSERT_TRUE(img_data[6] == 0xFF); |
|
ASSERT_TRUE(img_data[7] == 0xFF); |
|
|
|
// Second Test : Read PNG without alpha, imread flag -1 |
|
img = imread(string(ts->get_data_path()) + "readwrite/color_palette_no_alpha.png",-1); |
|
if (img.empty()) ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA); |
|
|
|
ASSERT_TRUE(img.channels() == 3); |
|
|
|
img_data = img.ptr(); |
|
|
|
// Verification first pixel is red in BGR |
|
ASSERT_TRUE(img_data[0] == 0x00); |
|
ASSERT_TRUE(img_data[1] == 0x00); |
|
ASSERT_TRUE(img_data[2] == 0xFF); |
|
|
|
// Verification second pixel is red in BGR |
|
ASSERT_TRUE(img_data[3] == 0x00); |
|
ASSERT_TRUE(img_data[4] == 0x00); |
|
ASSERT_TRUE(img_data[5] == 0xFF); |
|
|
|
// Third Test : Read PNG with alpha, imread flag 1 |
|
img = imread(string(ts->get_data_path()) + "readwrite/color_palette_alpha.png",1); |
|
if (img.empty()) ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA); |
|
|
|
ASSERT_TRUE(img.channels() == 3); |
|
|
|
img_data = img.ptr(); |
|
|
|
// Verification first pixel is red in BGR |
|
ASSERT_TRUE(img_data[0] == 0x00); |
|
ASSERT_TRUE(img_data[1] == 0x00); |
|
ASSERT_TRUE(img_data[2] == 0xFF); |
|
|
|
// Verification second pixel is red in BGR |
|
ASSERT_TRUE(img_data[3] == 0x00); |
|
ASSERT_TRUE(img_data[4] == 0x00); |
|
ASSERT_TRUE(img_data[5] == 0xFF); |
|
|
|
// Fourth Test : Read PNG without alpha, imread flag 1 |
|
img = imread(string(ts->get_data_path()) + "readwrite/color_palette_no_alpha.png",1); |
|
if (img.empty()) ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA); |
|
|
|
ASSERT_TRUE(img.channels() == 3); |
|
|
|
img_data = img.ptr(); |
|
|
|
// Verification first pixel is red in BGR |
|
ASSERT_TRUE(img_data[0] == 0x00); |
|
ASSERT_TRUE(img_data[1] == 0x00); |
|
ASSERT_TRUE(img_data[2] == 0xFF); |
|
|
|
// Verification second pixel is red in BGR |
|
ASSERT_TRUE(img_data[3] == 0x00); |
|
ASSERT_TRUE(img_data[4] == 0x00); |
|
ASSERT_TRUE(img_data[5] == 0xFF); |
|
} |
|
catch(...) |
|
{ |
|
ts->set_failed_test_info(cvtest::TS::FAIL_EXCEPTION); |
|
} |
|
ts->set_failed_test_info(cvtest::TS::OK); |
|
} |
|
}; |
|
|
|
TEST(Imgcodecs_Image, read_png_color_palette_with_alpha) { CV_GrfmtReadPNGColorPaletteWithAlphaTest test; test.safe_run(); } |
|
#endif |
|
|
|
#ifdef HAVE_JPEG |
|
TEST(Imgcodecs_Jpeg, encode_empty) |
|
{ |
|
cv::Mat img; |
|
std::vector<uchar> jpegImg; |
|
|
|
ASSERT_THROW(cv::imencode(".jpg", img, jpegImg), cv::Exception); |
|
} |
|
|
|
TEST(Imgcodecs_Jpeg, encode_decode_progressive_jpeg) |
|
{ |
|
cvtest::TS& ts = *cvtest::TS::ptr(); |
|
string input = string(ts.get_data_path()) + "../cv/shared/lena.png"; |
|
cv::Mat img = cv::imread(input); |
|
ASSERT_FALSE(img.empty()); |
|
|
|
std::vector<int> params; |
|
params.push_back(IMWRITE_JPEG_PROGRESSIVE); |
|
params.push_back(1); |
|
|
|
string output_progressive = cv::tempfile(".jpg"); |
|
EXPECT_NO_THROW(cv::imwrite(output_progressive, img, params)); |
|
cv::Mat img_jpg_progressive = cv::imread(output_progressive); |
|
|
|
string output_normal = cv::tempfile(".jpg"); |
|
EXPECT_NO_THROW(cv::imwrite(output_normal, img)); |
|
cv::Mat img_jpg_normal = cv::imread(output_normal); |
|
|
|
EXPECT_EQ(0, cvtest::norm(img_jpg_progressive, img_jpg_normal, NORM_INF)); |
|
|
|
remove(output_progressive.c_str()); |
|
} |
|
|
|
TEST(Imgcodecs_Jpeg, encode_decode_optimize_jpeg) |
|
{ |
|
cvtest::TS& ts = *cvtest::TS::ptr(); |
|
string input = string(ts.get_data_path()) + "../cv/shared/lena.png"; |
|
cv::Mat img = cv::imread(input); |
|
ASSERT_FALSE(img.empty()); |
|
|
|
std::vector<int> params; |
|
params.push_back(IMWRITE_JPEG_OPTIMIZE); |
|
params.push_back(1); |
|
|
|
string output_optimized = cv::tempfile(".jpg"); |
|
EXPECT_NO_THROW(cv::imwrite(output_optimized, img, params)); |
|
cv::Mat img_jpg_optimized = cv::imread(output_optimized); |
|
|
|
string output_normal = cv::tempfile(".jpg"); |
|
EXPECT_NO_THROW(cv::imwrite(output_normal, img)); |
|
cv::Mat img_jpg_normal = cv::imread(output_normal); |
|
|
|
EXPECT_EQ(0, cvtest::norm(img_jpg_optimized, img_jpg_normal, NORM_INF)); |
|
|
|
remove(output_optimized.c_str()); |
|
} |
|
|
|
TEST(Imgcodecs_Jpeg, encode_decode_rst_jpeg) |
|
{ |
|
cvtest::TS& ts = *cvtest::TS::ptr(); |
|
string input = string(ts.get_data_path()) + "../cv/shared/lena.png"; |
|
cv::Mat img = cv::imread(input); |
|
ASSERT_FALSE(img.empty()); |
|
|
|
std::vector<int> params; |
|
params.push_back(IMWRITE_JPEG_RST_INTERVAL); |
|
params.push_back(1); |
|
|
|
string output_rst = cv::tempfile(".jpg"); |
|
EXPECT_NO_THROW(cv::imwrite(output_rst, img, params)); |
|
cv::Mat img_jpg_rst = cv::imread(output_rst); |
|
|
|
string output_normal = cv::tempfile(".jpg"); |
|
EXPECT_NO_THROW(cv::imwrite(output_normal, img)); |
|
cv::Mat img_jpg_normal = cv::imread(output_normal); |
|
|
|
EXPECT_EQ(0, cvtest::norm(img_jpg_rst, img_jpg_normal, NORM_INF)); |
|
|
|
remove(output_rst.c_str()); |
|
} |
|
|
|
#endif |
|
|
|
|
|
#ifdef HAVE_TIFF |
|
|
|
// these defines are used to resolve conflict between tiff.h and opencv2/core/types_c.h |
|
#define uint64 uint64_hack_ |
|
#define int64 int64_hack_ |
|
#include "tiff.h" |
|
|
|
#ifdef ANDROID |
|
// Test disabled as it uses a lot of memory. |
|
// It is killed with SIGKILL by out of memory killer. |
|
TEST(Imgcodecs_Tiff, DISABLED_decode_tile16384x16384) |
|
#else |
|
TEST(Imgcodecs_Tiff, decode_tile16384x16384) |
|
#endif |
|
{ |
|
// see issue #2161 |
|
cv::Mat big(16384, 16384, CV_8UC1, cv::Scalar::all(0)); |
|
string file3 = cv::tempfile(".tiff"); |
|
string file4 = cv::tempfile(".tiff"); |
|
|
|
std::vector<int> params; |
|
params.push_back(TIFFTAG_ROWSPERSTRIP); |
|
params.push_back(big.rows); |
|
cv::imwrite(file4, big, params); |
|
cv::imwrite(file3, big.colRange(0, big.cols - 1), params); |
|
big.release(); |
|
|
|
try |
|
{ |
|
cv::imread(file3, IMREAD_UNCHANGED); |
|
EXPECT_NO_THROW(cv::imread(file4, IMREAD_UNCHANGED)); |
|
} |
|
catch(const std::bad_alloc&) |
|
{ |
|
// have no enough memory |
|
} |
|
|
|
remove(file3.c_str()); |
|
remove(file4.c_str()); |
|
} |
|
|
|
TEST(Imgcodecs_Tiff, write_read_16bit_big_little_endian) |
|
{ |
|
// see issue #2601 "16-bit Grayscale TIFF Load Failures Due to Buffer Underflow and Endianness" |
|
|
|
// Setup data for two minimal 16-bit grayscale TIFF files in both endian formats |
|
uchar tiff_sample_data[2][86] = { { |
|
// Little endian |
|
0x49, 0x49, 0x2a, 0x00, 0x0c, 0x00, 0x00, 0x00, 0xad, 0xde, 0xef, 0xbe, 0x06, 0x00, 0x00, 0x01, |
|
0x03, 0x00, 0x01, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x01, 0x01, 0x03, 0x00, 0x01, 0x00, |
|
0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x02, 0x01, 0x03, 0x00, 0x01, 0x00, 0x00, 0x00, 0x10, 0x00, |
|
0x00, 0x00, 0x06, 0x01, 0x03, 0x00, 0x01, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x11, 0x01, |
|
0x04, 0x00, 0x01, 0x00, 0x00, 0x00, 0x08, 0x00, 0x00, 0x00, 0x17, 0x01, 0x04, 0x00, 0x01, 0x00, |
|
0x00, 0x00, 0x04, 0x00, 0x00, 0x00 }, { |
|
// Big endian |
|
0x4d, 0x4d, 0x00, 0x2a, 0x00, 0x00, 0x00, 0x0c, 0xde, 0xad, 0xbe, 0xef, 0x00, 0x06, 0x01, 0x00, |
|
0x00, 0x03, 0x00, 0x00, 0x00, 0x01, 0x00, 0x02, 0x00, 0x00, 0x01, 0x01, 0x00, 0x03, 0x00, 0x00, |
|
0x00, 0x01, 0x00, 0x01, 0x00, 0x00, 0x01, 0x02, 0x00, 0x03, 0x00, 0x00, 0x00, 0x01, 0x00, 0x10, |
|
0x00, 0x00, 0x01, 0x06, 0x00, 0x03, 0x00, 0x00, 0x00, 0x01, 0x00, 0x01, 0x00, 0x00, 0x01, 0x11, |
|
0x00, 0x04, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x08, 0x01, 0x17, 0x00, 0x04, 0x00, 0x00, |
|
0x00, 0x01, 0x00, 0x00, 0x00, 0x04 } |
|
}; |
|
|
|
// Test imread() for both a little endian TIFF and big endian TIFF |
|
for (int i = 0; i < 2; i++) |
|
{ |
|
string filename = cv::tempfile(".tiff"); |
|
|
|
// Write sample TIFF file |
|
FILE* fp = fopen(filename.c_str(), "wb"); |
|
ASSERT_TRUE(fp != NULL); |
|
ASSERT_EQ((size_t)1, fwrite(tiff_sample_data, 86, 1, fp)); |
|
fclose(fp); |
|
|
|
Mat img = imread(filename, IMREAD_UNCHANGED); |
|
|
|
EXPECT_EQ(1, img.rows); |
|
EXPECT_EQ(2, img.cols); |
|
EXPECT_EQ(CV_16U, img.type()); |
|
EXPECT_EQ(sizeof(ushort), img.elemSize()); |
|
EXPECT_EQ(1, img.channels()); |
|
EXPECT_EQ(0xDEAD, img.at<ushort>(0,0)); |
|
EXPECT_EQ(0xBEEF, img.at<ushort>(0,1)); |
|
|
|
remove(filename.c_str()); |
|
} |
|
} |
|
|
|
class CV_GrfmtReadTifTiledWithNotFullTiles: public cvtest::BaseTest |
|
{ |
|
public: |
|
void run(int) |
|
{ |
|
try |
|
{ |
|
/* see issue #3472 - dealing with tiled images where the tile size is |
|
* not a multiple of image size. |
|
* The tiled images were created with 'convert' from ImageMagick, |
|
* using the command 'convert <input> -define tiff:tile-geometry=128x128 -depth [8|16] <output> |
|
* Note that the conversion to 16 bits expands the range from 0-255 to 0-255*255, |
|
* so the test converts back but rounding errors cause small differences. |
|
*/ |
|
cv::Mat img = imread(string(ts->get_data_path()) + "readwrite/non_tiled.tif",-1); |
|
if (img.empty()) ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA); |
|
ASSERT_TRUE(img.channels() == 3); |
|
cv::Mat tiled8 = imread(string(ts->get_data_path()) + "readwrite/tiled_8.tif", -1); |
|
if (tiled8.empty()) ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA); |
|
ASSERT_PRED_FORMAT2(cvtest::MatComparator(0, 0), img, tiled8); |
|
|
|
cv::Mat tiled16 = imread(string(ts->get_data_path()) + "readwrite/tiled_16.tif", -1); |
|
if (tiled16.empty()) ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA); |
|
ASSERT_TRUE(tiled16.elemSize() == 6); |
|
tiled16.convertTo(tiled8, CV_8UC3, 1./256.); |
|
ASSERT_PRED_FORMAT2(cvtest::MatComparator(2, 0), img, tiled8); |
|
// What about 32, 64 bit? |
|
} |
|
catch(...) |
|
{ |
|
ts->set_failed_test_info(cvtest::TS::FAIL_EXCEPTION); |
|
} |
|
ts->set_failed_test_info(cvtest::TS::OK); |
|
} |
|
}; |
|
|
|
TEST(Imgcodecs_Tiff, decode_tile_remainder) |
|
{ |
|
CV_GrfmtReadTifTiledWithNotFullTiles test; test.safe_run(); |
|
} |
|
|
|
TEST(Imgcodecs_Tiff, decode_infinite_rowsperstrip) |
|
{ |
|
const uchar sample_data[142] = { |
|
0x49, 0x49, 0x2a, 0x00, 0x10, 0x00, 0x00, 0x00, 0x56, 0x54, |
|
0x56, 0x5a, 0x59, 0x55, 0x5a, 0x00, 0x0a, 0x00, 0x00, 0x01, |
|
0x03, 0x00, 0x01, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, |
|
0x01, 0x01, 0x03, 0x00, 0x01, 0x00, 0x00, 0x00, 0x07, 0x00, |
|
0x00, 0x00, 0x02, 0x01, 0x03, 0x00, 0x01, 0x00, 0x00, 0x00, |
|
0x08, 0x00, 0x00, 0x00, 0x03, 0x01, 0x03, 0x00, 0x01, 0x00, |
|
0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x06, 0x01, 0x03, 0x00, |
|
0x01, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x11, 0x01, |
|
0x04, 0x00, 0x01, 0x00, 0x00, 0x00, 0x08, 0x00, 0x00, 0x00, |
|
0x15, 0x01, 0x03, 0x00, 0x01, 0x00, 0x00, 0x00, 0x01, 0x00, |
|
0x00, 0x00, 0x16, 0x01, 0x04, 0x00, 0x01, 0x00, 0x00, 0x00, |
|
0xff, 0xff, 0xff, 0xff, 0x17, 0x01, 0x04, 0x00, 0x01, 0x00, |
|
0x00, 0x00, 0x07, 0x00, 0x00, 0x00, 0x1c, 0x01, 0x03, 0x00, |
|
0x01, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, |
|
0x00, 0x00 |
|
}; |
|
|
|
const string filename = cv::tempfile(".tiff"); |
|
std::ofstream outfile(filename.c_str(), std::ofstream::binary); |
|
outfile.write(reinterpret_cast<const char *>(sample_data), sizeof sample_data); |
|
outfile.close(); |
|
|
|
EXPECT_NO_THROW(cv::imread(filename, IMREAD_UNCHANGED)); |
|
|
|
remove(filename.c_str()); |
|
} |
|
|
|
class CV_GrfmtReadTifMultiPage : public cvtest::BaseTest |
|
{ |
|
private: |
|
void compare(int flags) |
|
{ |
|
const string folder = string(cvtest::TS::ptr()->get_data_path()) + "/readwrite/"; |
|
const int page_count = 6; |
|
|
|
vector<Mat> pages; |
|
bool res = imreadmulti(folder + "multipage.tif", pages, flags); |
|
ASSERT_TRUE(res == true); |
|
ASSERT_EQ(static_cast<size_t>(page_count), pages.size()); |
|
|
|
for (int i = 0; i < page_count; i++) |
|
{ |
|
char buffer[256]; |
|
sprintf(buffer, "%smultipage_p%d.tif", folder.c_str(), i + 1); |
|
const string filepath(buffer); |
|
const Mat page = imread(filepath, flags); |
|
ASSERT_TRUE(mats_equal(page, pages[i])); |
|
} |
|
} |
|
|
|
public: |
|
void run(int) |
|
{ |
|
compare(IMREAD_UNCHANGED); |
|
compare(IMREAD_GRAYSCALE); |
|
compare(IMREAD_COLOR); |
|
compare(IMREAD_ANYDEPTH); |
|
compare(IMREAD_ANYCOLOR); |
|
// compare(IMREAD_LOAD_GDAL); // GDAL does not support multi-page TIFFs |
|
} |
|
}; |
|
|
|
TEST(Imgcodecs_Tiff, decode_multipage) |
|
{ |
|
CV_GrfmtReadTifMultiPage test; test.safe_run(); |
|
} |
|
|
|
TEST(Imgcodecs_Tiff, imdecode_no_exception_temporary_file_removed) |
|
{ |
|
cvtest::TS& ts = *cvtest::TS::ptr(); |
|
string input = string(ts.get_data_path()) + "../cv/shared/lena.png"; |
|
cv::Mat img = cv::imread(input); |
|
ASSERT_FALSE(img.empty()); |
|
|
|
std::vector<uchar> buf; |
|
EXPECT_NO_THROW(cv::imencode(".tiff", img, buf)); |
|
|
|
EXPECT_NO_THROW(cv::imdecode(buf, IMREAD_UNCHANGED)); |
|
} |
|
|
|
#endif |
|
|
|
#ifdef HAVE_WEBP |
|
|
|
TEST(Imgcodecs_WebP, encode_decode_lossless_webp) |
|
{ |
|
cvtest::TS& ts = *cvtest::TS::ptr(); |
|
string input = string(ts.get_data_path()) + "../cv/shared/lena.png"; |
|
cv::Mat img = cv::imread(input); |
|
ASSERT_FALSE(img.empty()); |
|
|
|
string output = cv::tempfile(".webp"); |
|
EXPECT_NO_THROW(cv::imwrite(output, img)); // lossless |
|
|
|
cv::Mat img_webp = cv::imread(output); |
|
|
|
std::vector<unsigned char> buf; |
|
|
|
FILE * wfile = NULL; |
|
|
|
wfile = fopen(output.c_str(), "rb"); |
|
if (wfile != NULL) |
|
{ |
|
fseek(wfile, 0, SEEK_END); |
|
size_t wfile_size = ftell(wfile); |
|
fseek(wfile, 0, SEEK_SET); |
|
|
|
buf.resize(wfile_size); |
|
|
|
size_t data_size = fread(&buf[0], 1, wfile_size, wfile); |
|
|
|
if(wfile) |
|
{ |
|
fclose(wfile); |
|
} |
|
|
|
if (data_size != wfile_size) |
|
{ |
|
EXPECT_TRUE(false); |
|
} |
|
} |
|
|
|
remove(output.c_str()); |
|
|
|
cv::Mat decode = cv::imdecode(buf, IMREAD_COLOR); |
|
ASSERT_FALSE(decode.empty()); |
|
EXPECT_TRUE(cvtest::norm(decode, img_webp, NORM_INF) == 0); |
|
|
|
ASSERT_FALSE(img_webp.empty()); |
|
|
|
EXPECT_TRUE(cvtest::norm(img, img_webp, NORM_INF) == 0); |
|
} |
|
|
|
TEST(Imgcodecs_WebP, encode_decode_lossy_webp) |
|
{ |
|
cvtest::TS& ts = *cvtest::TS::ptr(); |
|
std::string input = std::string(ts.get_data_path()) + "../cv/shared/lena.png"; |
|
cv::Mat img = cv::imread(input); |
|
ASSERT_FALSE(img.empty()); |
|
|
|
for(int q = 100; q>=0; q-=20) |
|
{ |
|
std::vector<int> params; |
|
params.push_back(IMWRITE_WEBP_QUALITY); |
|
params.push_back(q); |
|
string output = cv::tempfile(".webp"); |
|
|
|
EXPECT_NO_THROW(cv::imwrite(output, img, params)); |
|
cv::Mat img_webp = cv::imread(output); |
|
remove(output.c_str()); |
|
EXPECT_FALSE(img_webp.empty()); |
|
EXPECT_EQ(3, img_webp.channels()); |
|
EXPECT_EQ(512, img_webp.cols); |
|
EXPECT_EQ(512, img_webp.rows); |
|
} |
|
} |
|
|
|
TEST(Imgcodecs_WebP, encode_decode_with_alpha_webp) |
|
{ |
|
cvtest::TS& ts = *cvtest::TS::ptr(); |
|
std::string input = std::string(ts.get_data_path()) + "../cv/shared/lena.png"; |
|
cv::Mat img = cv::imread(input); |
|
ASSERT_FALSE(img.empty()); |
|
|
|
std::vector<cv::Mat> imgs; |
|
cv::split(img, imgs); |
|
imgs.push_back(cv::Mat(imgs[0])); |
|
imgs[imgs.size() - 1] = cv::Scalar::all(128); |
|
cv::merge(imgs, img); |
|
|
|
string output = cv::tempfile(".webp"); |
|
|
|
EXPECT_NO_THROW(cv::imwrite(output, img)); |
|
cv::Mat img_webp = cv::imread(output); |
|
remove(output.c_str()); |
|
EXPECT_FALSE(img_webp.empty()); |
|
EXPECT_EQ(4, img_webp.channels()); |
|
EXPECT_EQ(512, img_webp.cols); |
|
EXPECT_EQ(512, img_webp.rows); |
|
} |
|
|
|
#endif |
|
|
|
TEST(Imgcodecs_Hdr, regression) |
|
{ |
|
string folder = string(cvtest::TS::ptr()->get_data_path()) + "/readwrite/"; |
|
string name_rle = folder + "rle.hdr"; |
|
string name_no_rle = folder + "no_rle.hdr"; |
|
Mat img_rle = imread(name_rle, -1); |
|
ASSERT_FALSE(img_rle.empty()) << "Could not open " << name_rle; |
|
Mat img_no_rle = imread(name_no_rle, -1); |
|
ASSERT_FALSE(img_no_rle.empty()) << "Could not open " << name_no_rle; |
|
|
|
double min = 0.0, max = 1.0; |
|
minMaxLoc(abs(img_rle - img_no_rle), &min, &max); |
|
ASSERT_FALSE(max > DBL_EPSILON); |
|
string tmp_file_name = tempfile(".hdr"); |
|
vector<int>param(1); |
|
for(int i = 0; i < 2; i++) { |
|
param[0] = i; |
|
imwrite(tmp_file_name, img_rle, param); |
|
Mat written_img = imread(tmp_file_name, -1); |
|
ASSERT_FALSE(written_img.empty()) << "Could not open " << tmp_file_name; |
|
minMaxLoc(abs(img_rle - written_img), &min, &max); |
|
ASSERT_FALSE(max > DBL_EPSILON); |
|
} |
|
} |
|
|
|
TEST(Imgcodecs_Pam, readwrite) |
|
{ |
|
string folder = string(cvtest::TS::ptr()->get_data_path()) + "readwrite/"; |
|
string filepath = folder + "lena.pam"; |
|
|
|
cv::Mat img = cv::imread(filepath); |
|
ASSERT_FALSE(img.empty()); |
|
|
|
std::vector<int> params; |
|
params.push_back(IMWRITE_PAM_TUPLETYPE); |
|
params.push_back(IMWRITE_PAM_FORMAT_RGB); |
|
|
|
string writefile = cv::tempfile(".pam"); |
|
EXPECT_NO_THROW(cv::imwrite(writefile, img, params)); |
|
cv::Mat reread = cv::imread(writefile); |
|
|
|
string writefile_no_param = cv::tempfile(".pam"); |
|
EXPECT_NO_THROW(cv::imwrite(writefile_no_param, img)); |
|
cv::Mat reread_no_param = cv::imread(writefile_no_param); |
|
|
|
EXPECT_EQ(0, cvtest::norm(reread, reread_no_param, NORM_INF)); |
|
EXPECT_EQ(0, cvtest::norm(img, reread, NORM_INF)); |
|
}
|
|
|