mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
199 lines
5.6 KiB
199 lines
5.6 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
|
|
namespace cv |
|
{ |
|
|
|
using std::vector; |
|
|
|
Feature2D::~Feature2D() {} |
|
|
|
/* |
|
* Detect keypoints in an image. |
|
* image The image. |
|
* keypoints The detected keypoints. |
|
* mask Mask specifying where to look for keypoints (optional). Must be a char |
|
* matrix with non-zero values in the region of interest. |
|
*/ |
|
void Feature2D::detect( InputArray image, |
|
std::vector<KeyPoint>& keypoints, |
|
InputArray mask ) |
|
{ |
|
CV_INSTRUMENT_REGION() |
|
|
|
if( image.empty() ) |
|
{ |
|
keypoints.clear(); |
|
return; |
|
} |
|
detectAndCompute(image, mask, keypoints, noArray(), false); |
|
} |
|
|
|
|
|
void Feature2D::detect( InputArrayOfArrays _images, |
|
std::vector<std::vector<KeyPoint> >& keypoints, |
|
InputArrayOfArrays _masks ) |
|
{ |
|
CV_INSTRUMENT_REGION() |
|
|
|
vector<Mat> images, masks; |
|
|
|
_images.getMatVector(images); |
|
size_t i, nimages = images.size(); |
|
|
|
if( !_masks.empty() ) |
|
{ |
|
_masks.getMatVector(masks); |
|
CV_Assert(masks.size() == nimages); |
|
} |
|
|
|
keypoints.resize(nimages); |
|
|
|
for( i = 0; i < nimages; i++ ) |
|
{ |
|
detect(images[i], keypoints[i], masks.empty() ? Mat() : masks[i] ); |
|
} |
|
} |
|
|
|
/* |
|
* Compute the descriptors for a set of keypoints in an image. |
|
* image The image. |
|
* keypoints The input keypoints. Keypoints for which a descriptor cannot be computed are removed. |
|
* descriptors Copmputed descriptors. Row i is the descriptor for keypoint i. |
|
*/ |
|
void Feature2D::compute( InputArray image, |
|
std::vector<KeyPoint>& keypoints, |
|
OutputArray descriptors ) |
|
{ |
|
CV_INSTRUMENT_REGION() |
|
|
|
if( image.empty() ) |
|
{ |
|
descriptors.release(); |
|
return; |
|
} |
|
detectAndCompute(image, noArray(), keypoints, descriptors, true); |
|
} |
|
|
|
void Feature2D::compute( InputArrayOfArrays _images, |
|
std::vector<std::vector<KeyPoint> >& keypoints, |
|
OutputArrayOfArrays _descriptors ) |
|
{ |
|
CV_INSTRUMENT_REGION() |
|
|
|
if( !_descriptors.needed() ) |
|
return; |
|
|
|
vector<Mat> images; |
|
|
|
_images.getMatVector(images); |
|
size_t i, nimages = images.size(); |
|
|
|
CV_Assert( keypoints.size() == nimages ); |
|
CV_Assert( _descriptors.kind() == _InputArray::STD_VECTOR_MAT ); |
|
|
|
vector<Mat>& descriptors = *(vector<Mat>*)_descriptors.getObj(); |
|
descriptors.resize(nimages); |
|
|
|
for( i = 0; i < nimages; i++ ) |
|
{ |
|
compute(images[i], keypoints[i], descriptors[i]); |
|
} |
|
} |
|
|
|
|
|
/* Detects keypoints and computes the descriptors */ |
|
void Feature2D::detectAndCompute( InputArray, InputArray, |
|
std::vector<KeyPoint>&, |
|
OutputArray, |
|
bool ) |
|
{ |
|
CV_INSTRUMENT_REGION() |
|
|
|
CV_Error(Error::StsNotImplemented, ""); |
|
} |
|
|
|
void Feature2D::write( const String& fileName ) const |
|
{ |
|
FileStorage fs(fileName, FileStorage::WRITE); |
|
write(fs); |
|
} |
|
|
|
void Feature2D::read( const String& fileName ) |
|
{ |
|
FileStorage fs(fileName, FileStorage::READ); |
|
read(fs.root()); |
|
} |
|
|
|
void Feature2D::write( FileStorage&) const |
|
{ |
|
} |
|
|
|
void Feature2D::read( const FileNode&) |
|
{ |
|
} |
|
|
|
int Feature2D::descriptorSize() const |
|
{ |
|
return 0; |
|
} |
|
|
|
int Feature2D::descriptorType() const |
|
{ |
|
return CV_32F; |
|
} |
|
|
|
int Feature2D::defaultNorm() const |
|
{ |
|
int tp = descriptorType(); |
|
return tp == CV_8U ? NORM_HAMMING : NORM_L2; |
|
} |
|
|
|
// Return true if detector object is empty |
|
bool Feature2D::empty() const |
|
{ |
|
return true; |
|
} |
|
|
|
}
|
|
|