Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

938 lines
30 KiB

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include <algorithm>
#include <iterator>
#include <limits>
namespace cv
{
int RANSACUpdateNumIters( double p, double ep, int modelPoints, int maxIters )
{
if( modelPoints <= 0 )
CV_Error( Error::StsOutOfRange, "the number of model points should be positive" );
p = MAX(p, 0.);
p = MIN(p, 1.);
ep = MAX(ep, 0.);
ep = MIN(ep, 1.);
// avoid inf's & nan's
double num = MAX(1. - p, DBL_MIN);
double denom = 1. - std::pow(1. - ep, modelPoints);
if( denom < DBL_MIN )
return 0;
num = std::log(num);
denom = std::log(denom);
return denom >= 0 || -num >= maxIters*(-denom) ? maxIters : cvRound(num/denom);
}
class RANSACPointSetRegistrator : public PointSetRegistrator
{
public:
RANSACPointSetRegistrator(const Ptr<PointSetRegistrator::Callback>& _cb=Ptr<PointSetRegistrator::Callback>(),
int _modelPoints=0, double _threshold=0, double _confidence=0.99, int _maxIters=1000)
: cb(_cb), modelPoints(_modelPoints), threshold(_threshold), confidence(_confidence), maxIters(_maxIters)
{
checkPartialSubsets = false;
}
int findInliers( const Mat& m1, const Mat& m2, const Mat& model, Mat& err, Mat& mask, double thresh ) const
{
cb->computeError( m1, m2, model, err );
mask.create(err.size(), CV_8U);
CV_Assert( err.isContinuous() && err.type() == CV_32F && mask.isContinuous() && mask.type() == CV_8U);
const float* errptr = err.ptr<float>();
uchar* maskptr = mask.ptr<uchar>();
float t = (float)(thresh*thresh);
int i, n = (int)err.total(), nz = 0;
for( i = 0; i < n; i++ )
{
int f = errptr[i] <= t;
maskptr[i] = (uchar)f;
nz += f;
}
return nz;
}
bool getSubset( const Mat& m1, const Mat& m2,
Mat& ms1, Mat& ms2, RNG& rng,
int maxAttempts=1000 ) const
{
cv::AutoBuffer<int> _idx(modelPoints);
int* idx = _idx;
int i = 0, j, k, iters = 0;
int d1 = m1.channels() > 1 ? m1.channels() : m1.cols;
int d2 = m2.channels() > 1 ? m2.channels() : m2.cols;
int esz1 = (int)m1.elemSize1()*d1, esz2 = (int)m2.elemSize1()*d2;
int count = m1.checkVector(d1), count2 = m2.checkVector(d2);
const int *m1ptr = m1.ptr<int>(), *m2ptr = m2.ptr<int>();
ms1.create(modelPoints, 1, CV_MAKETYPE(m1.depth(), d1));
ms2.create(modelPoints, 1, CV_MAKETYPE(m2.depth(), d2));
int *ms1ptr = ms1.ptr<int>(), *ms2ptr = ms2.ptr<int>();
CV_Assert( count >= modelPoints && count == count2 );
CV_Assert( (esz1 % sizeof(int)) == 0 && (esz2 % sizeof(int)) == 0 );
esz1 /= sizeof(int);
esz2 /= sizeof(int);
for(; iters < maxAttempts; iters++)
{
for( i = 0; i < modelPoints && iters < maxAttempts; )
{
int idx_i = 0;
for(;;)
{
idx_i = idx[i] = rng.uniform(0, count);
for( j = 0; j < i; j++ )
if( idx_i == idx[j] )
break;
if( j == i )
break;
}
for( k = 0; k < esz1; k++ )
ms1ptr[i*esz1 + k] = m1ptr[idx_i*esz1 + k];
for( k = 0; k < esz2; k++ )
ms2ptr[i*esz2 + k] = m2ptr[idx_i*esz2 + k];
if( checkPartialSubsets && !cb->checkSubset( ms1, ms2, i+1 ))
{
// we may have selected some bad points;
// so, let's remove some of them randomly
i = rng.uniform(0, i+1);
iters++;
continue;
}
i++;
}
if( !checkPartialSubsets && i == modelPoints && !cb->checkSubset(ms1, ms2, i))
continue;
break;
}
return i == modelPoints && iters < maxAttempts;
}
bool run(InputArray _m1, InputArray _m2, OutputArray _model, OutputArray _mask) const
{
bool result = false;
Mat m1 = _m1.getMat(), m2 = _m2.getMat();
Mat err, mask, model, bestModel, ms1, ms2;
int iter, niters = MAX(maxIters, 1);
int d1 = m1.channels() > 1 ? m1.channels() : m1.cols;
int d2 = m2.channels() > 1 ? m2.channels() : m2.cols;
int count = m1.checkVector(d1), count2 = m2.checkVector(d2), maxGoodCount = 0;
RNG rng((uint64)-1);
CV_Assert( cb );
CV_Assert( confidence > 0 && confidence < 1 );
CV_Assert( count >= 0 && count2 == count );
if( count < modelPoints )
return false;
Mat bestMask0, bestMask;
if( _mask.needed() )
{
_mask.create(count, 1, CV_8U, -1, true);
bestMask0 = bestMask = _mask.getMat();
CV_Assert( (bestMask.cols == 1 || bestMask.rows == 1) && (int)bestMask.total() == count );
}
else
{
bestMask.create(count, 1, CV_8U);
bestMask0 = bestMask;
}
if( count == modelPoints )
{
if( cb->runKernel(m1, m2, bestModel) <= 0 )
return false;
bestModel.copyTo(_model);
bestMask.setTo(Scalar::all(1));
return true;
}
for( iter = 0; iter < niters; iter++ )
{
int i, nmodels;
if( count > modelPoints )
{
bool found = getSubset( m1, m2, ms1, ms2, rng, 10000 );
if( !found )
{
if( iter == 0 )
return false;
break;
}
}
nmodels = cb->runKernel( ms1, ms2, model );
if( nmodels <= 0 )
continue;
CV_Assert( model.rows % nmodels == 0 );
Size modelSize(model.cols, model.rows/nmodels);
for( i = 0; i < nmodels; i++ )
{
Mat model_i = model.rowRange( i*modelSize.height, (i+1)*modelSize.height );
int goodCount = findInliers( m1, m2, model_i, err, mask, threshold );
if( goodCount > MAX(maxGoodCount, modelPoints-1) )
{
std::swap(mask, bestMask);
model_i.copyTo(bestModel);
maxGoodCount = goodCount;
niters = RANSACUpdateNumIters( confidence, (double)(count - goodCount)/count, modelPoints, niters );
}
}
}
if( maxGoodCount > 0 )
{
if( bestMask.data != bestMask0.data )
{
if( bestMask.size() == bestMask0.size() )
bestMask.copyTo(bestMask0);
else
transpose(bestMask, bestMask0);
}
bestModel.copyTo(_model);
result = true;
}
else
_model.release();
return result;
}
void setCallback(const Ptr<PointSetRegistrator::Callback>& _cb) { cb = _cb; }
Ptr<PointSetRegistrator::Callback> cb;
int modelPoints;
bool checkPartialSubsets;
double threshold;
double confidence;
int maxIters;
};
class LMeDSPointSetRegistrator : public RANSACPointSetRegistrator
{
public:
LMeDSPointSetRegistrator(const Ptr<PointSetRegistrator::Callback>& _cb=Ptr<PointSetRegistrator::Callback>(),
int _modelPoints=0, double _confidence=0.99, int _maxIters=1000)
: RANSACPointSetRegistrator(_cb, _modelPoints, 0, _confidence, _maxIters) {}
bool run(InputArray _m1, InputArray _m2, OutputArray _model, OutputArray _mask) const
{
const double outlierRatio = 0.45;
bool result = false;
Mat m1 = _m1.getMat(), m2 = _m2.getMat();
Mat ms1, ms2, err, errf, model, bestModel, mask, mask0;
int d1 = m1.channels() > 1 ? m1.channels() : m1.cols;
int d2 = m2.channels() > 1 ? m2.channels() : m2.cols;
int count = m1.checkVector(d1), count2 = m2.checkVector(d2);
double minMedian = DBL_MAX;
RNG rng((uint64)-1);
CV_Assert( cb );
CV_Assert( confidence > 0 && confidence < 1 );
CV_Assert( count >= 0 && count2 == count );
if( count < modelPoints )
return false;
if( _mask.needed() )
{
_mask.create(count, 1, CV_8U, -1, true);
mask0 = mask = _mask.getMat();
CV_Assert( (mask.cols == 1 || mask.rows == 1) && (int)mask.total() == count );
}
if( count == modelPoints )
{
if( cb->runKernel(m1, m2, bestModel) <= 0 )
return false;
bestModel.copyTo(_model);
mask.setTo(Scalar::all(1));
return true;
}
int iter, niters = RANSACUpdateNumIters(confidence, outlierRatio, modelPoints, maxIters);
niters = MAX(niters, 3);
for( iter = 0; iter < niters; iter++ )
{
int i, nmodels;
if( count > modelPoints )
{
bool found = getSubset( m1, m2, ms1, ms2, rng );
if( !found )
{
if( iter == 0 )
return false;
break;
}
}
nmodels = cb->runKernel( ms1, ms2, model );
if( nmodels <= 0 )
continue;
CV_Assert( model.rows % nmodels == 0 );
Size modelSize(model.cols, model.rows/nmodels);
for( i = 0; i < nmodels; i++ )
{
Mat model_i = model.rowRange( i*modelSize.height, (i+1)*modelSize.height );
cb->computeError( m1, m2, model_i, err );
if( err.depth() != CV_32F )
err.convertTo(errf, CV_32F);
else
errf = err;
CV_Assert( errf.isContinuous() && errf.type() == CV_32F && (int)errf.total() == count );
std::nth_element(errf.ptr<int>(), errf.ptr<int>() + count/2, errf.ptr<int>() + count);
double median = errf.at<float>(count/2);
if( median < minMedian )
{
minMedian = median;
model_i.copyTo(bestModel);
}
}
}
if( minMedian < DBL_MAX )
{
double sigma = 2.5*1.4826*(1 + 5./(count - modelPoints))*std::sqrt(minMedian);
sigma = MAX( sigma, 0.001 );
count = findInliers( m1, m2, bestModel, err, mask, sigma );
if( _mask.needed() && mask0.data != mask.data )
{
if( mask0.size() == mask.size() )
mask.copyTo(mask0);
else
transpose(mask, mask0);
}
bestModel.copyTo(_model);
result = count >= modelPoints;
}
else
_model.release();
return result;
}
};
Ptr<PointSetRegistrator> createRANSACPointSetRegistrator(const Ptr<PointSetRegistrator::Callback>& _cb,
int _modelPoints, double _threshold,
double _confidence, int _maxIters)
{
return Ptr<PointSetRegistrator>(
new RANSACPointSetRegistrator(_cb, _modelPoints, _threshold, _confidence, _maxIters));
}
Ptr<PointSetRegistrator> createLMeDSPointSetRegistrator(const Ptr<PointSetRegistrator::Callback>& _cb,
int _modelPoints, double _confidence, int _maxIters)
{
return Ptr<PointSetRegistrator>(
new LMeDSPointSetRegistrator(_cb, _modelPoints, _confidence, _maxIters));
}
class Affine3DEstimatorCallback : public PointSetRegistrator::Callback
{
public:
int runKernel( InputArray _m1, InputArray _m2, OutputArray _model ) const
{
Mat m1 = _m1.getMat(), m2 = _m2.getMat();
const Point3f* from = m1.ptr<Point3f>();
const Point3f* to = m2.ptr<Point3f>();
const int N = 12;
double buf[N*N + N + N];
Mat A(N, N, CV_64F, &buf[0]);
Mat B(N, 1, CV_64F, &buf[0] + N*N);
Mat X(N, 1, CV_64F, &buf[0] + N*N + N);
double* Adata = A.ptr<double>();
double* Bdata = B.ptr<double>();
A = Scalar::all(0);
for( int i = 0; i < (N/3); i++ )
{
Bdata[i*3] = to[i].x;
Bdata[i*3+1] = to[i].y;
Bdata[i*3+2] = to[i].z;
double *aptr = Adata + i*3*N;
for(int k = 0; k < 3; ++k)
{
aptr[0] = from[i].x;
aptr[1] = from[i].y;
aptr[2] = from[i].z;
aptr[3] = 1.0;
aptr += 16;
}
}
solve(A, B, X, DECOMP_SVD);
X.reshape(1, 3).copyTo(_model);
return 1;
}
void computeError( InputArray _m1, InputArray _m2, InputArray _model, OutputArray _err ) const
{
Mat m1 = _m1.getMat(), m2 = _m2.getMat(), model = _model.getMat();
const Point3f* from = m1.ptr<Point3f>();
const Point3f* to = m2.ptr<Point3f>();
const double* F = model.ptr<double>();
int count = m1.checkVector(3);
CV_Assert( count > 0 );
_err.create(count, 1, CV_32F);
Mat err = _err.getMat();
float* errptr = err.ptr<float>();
for(int i = 0; i < count; i++ )
{
const Point3f& f = from[i];
const Point3f& t = to[i];
double a = F[0]*f.x + F[1]*f.y + F[ 2]*f.z + F[ 3] - t.x;
double b = F[4]*f.x + F[5]*f.y + F[ 6]*f.z + F[ 7] - t.y;
double c = F[8]*f.x + F[9]*f.y + F[10]*f.z + F[11] - t.z;
errptr[i] = (float)(a*a + b*b + c*c);
}
}
bool checkSubset( InputArray _ms1, InputArray _ms2, int count ) const
{
const float threshold = 0.996f;
Mat ms1 = _ms1.getMat(), ms2 = _ms2.getMat();
for( int inp = 1; inp <= 2; inp++ )
{
int j, k, i = count - 1;
const Mat* msi = inp == 1 ? &ms1 : &ms2;
const Point3f* ptr = msi->ptr<Point3f>();
CV_Assert( count <= msi->rows );
// check that the i-th selected point does not belong
// to a line connecting some previously selected points
for(j = 0; j < i; ++j)
{
Point3f d1 = ptr[j] - ptr[i];
float n1 = d1.x*d1.x + d1.y*d1.y;
for(k = 0; k < j; ++k)
{
Point3f d2 = ptr[k] - ptr[i];
float denom = (d2.x*d2.x + d2.y*d2.y)*n1;
float num = d1.x*d2.x + d1.y*d2.y;
if( num*num > threshold*threshold*denom )
return false;
}
}
}
return true;
}
};
class Affine2DEstimatorCallback : public PointSetRegistrator::Callback
{
public:
int runKernel( InputArray _m1, InputArray _m2, OutputArray _model ) const
{
Mat m1 = _m1.getMat(), m2 = _m2.getMat();
const Point2f* from = m1.ptr<Point2f>();
const Point2f* to = m2.ptr<Point2f>();
_model.create(2, 3, CV_64F);
Mat M_mat = _model.getMat();
double *M = M_mat.ptr<double>();
// we need 3 points to estimate affine transform
double x1 = from[0].x;
double y1 = from[0].y;
double x2 = from[1].x;
double y2 = from[1].y;
double x3 = from[2].x;
double y3 = from[2].y;
double X1 = to[0].x;
double Y1 = to[0].y;
double X2 = to[1].x;
double Y2 = to[1].y;
double X3 = to[2].x;
double Y3 = to[2].y;
/*
We want to solve AX = B
| x1 y1 1 0 0 0 |
| 0 0 0 x1 y1 1 |
| x2 y2 1 0 0 0 |
A = | 0 0 0 x2 y2 1 |
| x3 y3 1 0 0 0 |
| 0 0 0 x3 y3 1 |
B = (X1, Y1, X2, Y2, X3, Y3).t()
X = (a, b, c, d, e, f).t()
As the estimate of (a, b, c) only depends on the Xi, and (d, e, f) only
depends on the Yi, we do the *trick* to solve each one analytically.
| X1 | | x1 y1 1 | | a |
| X2 | = | x2 y2 1 | * | b |
| X3 | | x3 y3 1 | | c |
| Y1 | | x1 y1 1 | | d |
| Y2 | = | x2 y2 1 | * | e |
| Y3 | | x3 y3 1 | | f |
*/
double d = 1. / ( x1*(y2-y3) + x2*(y3-y1) + x3*(y1-y2) );
M[0] = d * ( X1*(y2-y3) + X2*(y3-y1) + X3*(y1-y2) );
M[1] = d * ( X1*(x3-x2) + X2*(x1-x3) + X3*(x2-x1) );
M[2] = d * ( X1*(x2*y3 - x3*y2) + X2*(x3*y1 - x1*y3) + X3*(x1*y2 - x2*y1) );
M[3] = d * ( Y1*(y2-y3) + Y2*(y3-y1) + Y3*(y1-y2) );
M[4] = d * ( Y1*(x3-x2) + Y2*(x1-x3) + Y3*(x2-x1) );
M[5] = d * ( Y1*(x2*y3 - x3*y2) + Y2*(x3*y1 - x1*y3) + Y3*(x1*y2 - x2*y1) );
return 1;
}
void computeError( InputArray _m1, InputArray _m2, InputArray _model, OutputArray _err ) const
{
Mat m1 = _m1.getMat(), m2 = _m2.getMat(), model = _model.getMat();
const Point2f* from = m1.ptr<Point2f>();
const Point2f* to = m2.ptr<Point2f>();
const double* F = model.ptr<double>();
int count = m1.checkVector(2);
CV_Assert( count > 0 );
_err.create(count, 1, CV_32F);
Mat err = _err.getMat();
float* errptr = err.ptr<float>();
// transform matrix to floats
float F0 = (float)F[0], F1 = (float)F[1], F2 = (float)F[2];
float F3 = (float)F[3], F4 = (float)F[4], F5 = (float)F[5];
for(int i = 0; i < count; i++ )
{
const Point2f& f = from[i];
const Point2f& t = to[i];
float a = F0*f.x + F1*f.y + F2 - t.x;
float b = F3*f.x + F4*f.y + F5 - t.y;
errptr[i] = a*a + b*b;
}
}
bool checkSubset( InputArray _ms1, InputArray, int count ) const
{
Mat ms1 = _ms1.getMat();
// check colinearity and also check that points are too close
// only ms1 affects actual estimation stability
return !haveCollinearPoints(ms1, count);
}
};
class AffinePartial2DEstimatorCallback : public Affine2DEstimatorCallback
{
public:
int runKernel( InputArray _m1, InputArray _m2, OutputArray _model ) const
{
Mat m1 = _m1.getMat(), m2 = _m2.getMat();
const Point2f* from = m1.ptr<Point2f>();
const Point2f* to = m2.ptr<Point2f>();
_model.create(2, 3, CV_64F);
Mat M_mat = _model.getMat();
double *M = M_mat.ptr<double>();
// we need only 2 points to estimate transform
double x1 = from[0].x;
double y1 = from[0].y;
double x2 = from[1].x;
double y2 = from[1].y;
double X1 = to[0].x;
double Y1 = to[0].y;
double X2 = to[1].x;
double Y2 = to[1].y;
/*
we are solving AS = B
| x1 -y1 1 0 |
| y1 x1 0 1 |
A = | x2 -y2 1 0 |
| y2 x2 0 1 |
B = (X1, Y1, X2, Y2).t()
we solve that analytically
*/
double d = 1./((x1-x2)*(x1-x2) + (y1-y2)*(y1-y2));
// solution vector
double S0 = d * ( (X1-X2)*(x1-x2) + (Y1-Y2)*(y1-y2) );
double S1 = d * ( (Y1-Y2)*(x1-x2) - (X1-X2)*(y1-y2) );
double S2 = d * ( (Y1-Y2)*(x1*y2 - x2*y1) - (X1*y2 - X2*y1)*(y1-y2) - (X1*x2 - X2*x1)*(x1-x2) );
double S3 = d * (-(X1-X2)*(x1*y2 - x2*y1) - (Y1*x2 - Y2*x1)*(x1-x2) - (Y1*y2 - Y2*y1)*(y1-y2) );
// set model, rotation part is antisymmetric
M[0] = M[4] = S0;
M[1] = -S1;
M[2] = S2;
M[3] = S1;
M[5] = S3;
return 1;
}
};
class Affine2DRefineCallback : public LMSolver::Callback
{
public:
Affine2DRefineCallback(InputArray _src, InputArray _dst)
{
src = _src.getMat();
dst = _dst.getMat();
}
bool compute(InputArray _param, OutputArray _err, OutputArray _Jac) const
{
int i, count = src.checkVector(2);
Mat param = _param.getMat();
_err.create(count*2, 1, CV_64F);
Mat err = _err.getMat(), J;
if( _Jac.needed())
{
_Jac.create(count*2, param.rows, CV_64F);
J = _Jac.getMat();
CV_Assert( J.isContinuous() && J.cols == 6 );
}
const Point2f* M = src.ptr<Point2f>();
const Point2f* m = dst.ptr<Point2f>();
const double* h = param.ptr<double>();
double* errptr = err.ptr<double>();
double* Jptr = J.data ? J.ptr<double>() : 0;
for( i = 0; i < count; i++ )
{
double Mx = M[i].x, My = M[i].y;
double xi = h[0]*Mx + h[1]*My + h[2];
double yi = h[3]*Mx + h[4]*My + h[5];
errptr[i*2] = xi - m[i].x;
errptr[i*2+1] = yi - m[i].y;
/*
Jacobian should be:
{x, y, 1, 0, 0, 0}
{0, 0, 0, x, y, 1}
*/
if( Jptr )
{
Jptr[0] = Mx; Jptr[1] = My; Jptr[2] = 1.;
Jptr[3] = Jptr[4] = Jptr[5] = 0.;
Jptr[6] = Jptr[7] = Jptr[8] = 0.;
Jptr[9] = Mx; Jptr[10] = My; Jptr[11] = 1.;
Jptr += 6*2;
}
}
return true;
}
Mat src, dst;
};
class AffinePartial2DRefineCallback : public LMSolver::Callback
{
public:
AffinePartial2DRefineCallback(InputArray _src, InputArray _dst)
{
src = _src.getMat();
dst = _dst.getMat();
}
bool compute(InputArray _param, OutputArray _err, OutputArray _Jac) const
{
int i, count = src.checkVector(2);
Mat param = _param.getMat();
_err.create(count*2, 1, CV_64F);
Mat err = _err.getMat(), J;
if( _Jac.needed())
{
_Jac.create(count*2, param.rows, CV_64F);
J = _Jac.getMat();
CV_Assert( J.isContinuous() && J.cols == 4 );
}
const Point2f* M = src.ptr<Point2f>();
const Point2f* m = dst.ptr<Point2f>();
const double* h = param.ptr<double>();
double* errptr = err.ptr<double>();
double* Jptr = J.data ? J.ptr<double>() : 0;
for( i = 0; i < count; i++ )
{
double Mx = M[i].x, My = M[i].y;
double xi = h[0]*Mx - h[1]*My + h[2];
double yi = h[1]*Mx + h[0]*My + h[3];
errptr[i*2] = xi - m[i].x;
errptr[i*2+1] = yi - m[i].y;
/*
Jacobian should be:
{x, -y, 1, 0}
{y, x, 0, 1}
*/
if( Jptr )
{
Jptr[0] = Mx; Jptr[1] = -My; Jptr[2] = 1.; Jptr[3] = 0.;
Jptr[4] = My; Jptr[5] = Mx; Jptr[6] = 0.; Jptr[7] = 1.;
Jptr += 4*2;
}
}
return true;
}
Mat src, dst;
};
int estimateAffine3D(InputArray _from, InputArray _to,
OutputArray _out, OutputArray _inliers,
double param1, double param2)
{
CV_INSTRUMENT_REGION()
Mat from = _from.getMat(), to = _to.getMat();
int count = from.checkVector(3);
CV_Assert( count >= 0 && to.checkVector(3) == count );
Mat dFrom, dTo;
from.convertTo(dFrom, CV_32F);
to.convertTo(dTo, CV_32F);
dFrom = dFrom.reshape(3, count);
dTo = dTo.reshape(3, count);
const double epsilon = DBL_EPSILON;
param1 = param1 <= 0 ? 3 : param1;
param2 = (param2 < epsilon) ? 0.99 : (param2 > 1 - epsilon) ? 0.99 : param2;
return createRANSACPointSetRegistrator(makePtr<Affine3DEstimatorCallback>(), 4, param1, param2)->run(dFrom, dTo, _out, _inliers);
}
Mat estimateAffine2D(InputArray _from, InputArray _to, OutputArray _inliers,
const int method, const double ransacReprojThreshold,
const size_t maxIters, const double confidence,
const size_t refineIters)
{
Mat from = _from.getMat(), to = _to.getMat();
int count = from.checkVector(2);
bool result = false;
Mat H;
CV_Assert( count >= 0 && to.checkVector(2) == count );
if (from.type() != CV_32FC2 || to.type() != CV_32FC2)
{
Mat tmp1, tmp2;
from.convertTo(tmp1, CV_32FC2);
from = tmp1;
to.convertTo(tmp2, CV_32FC2);
to = tmp2;
}
// convert to N x 1 vectors
from = from.reshape(2, count);
to = to.reshape(2, count);
Mat inliers;
if(_inliers.needed())
{
_inliers.create(count, 1, CV_8U, -1, true);
inliers = _inliers.getMat();
}
// run robust method
Ptr<PointSetRegistrator::Callback> cb = makePtr<Affine2DEstimatorCallback>();
if( method == RANSAC )
result = createRANSACPointSetRegistrator(cb, 3, ransacReprojThreshold, confidence, static_cast<int>(maxIters))->run(from, to, H, inliers);
else if( method == LMEDS )
result = createLMeDSPointSetRegistrator(cb, 3, confidence, static_cast<int>(maxIters))->run(from, to, H, inliers);
else
CV_Error(Error::StsBadArg, "Unknown or unsupported robust estimation method");
if(result && count > 3 && refineIters)
{
// reorder to start with inliers
compressElems(from.ptr<Point2f>(), inliers.ptr<uchar>(), 1, count);
int inliers_count = compressElems(to.ptr<Point2f>(), inliers.ptr<uchar>(), 1, count);
if(inliers_count > 0)
{
Mat src = from.rowRange(0, inliers_count);
Mat dst = to.rowRange(0, inliers_count);
Mat Hvec = H.reshape(1, 6);
createLMSolver(makePtr<Affine2DRefineCallback>(src, dst), static_cast<int>(refineIters))->run(Hvec);
}
}
if (!result)
{
H.release();
if(_inliers.needed())
{
inliers = Mat::zeros(count, 1, CV_8U);
inliers.copyTo(_inliers);
}
}
return H;
}
Mat estimateAffinePartial2D(InputArray _from, InputArray _to, OutputArray _inliers,
const int method, const double ransacReprojThreshold,
const size_t maxIters, const double confidence,
const size_t refineIters)
{
Mat from = _from.getMat(), to = _to.getMat();
const int count = from.checkVector(2);
bool result = false;
Mat H;
CV_Assert( count >= 0 && to.checkVector(2) == count );
if (from.type() != CV_32FC2 || to.type() != CV_32FC2)
{
Mat tmp1, tmp2;
from.convertTo(tmp1, CV_32FC2);
from = tmp1;
to.convertTo(tmp2, CV_32FC2);
to = tmp2;
}
// convert to N x 1 vectors
from = from.reshape(2, count);
to = to.reshape(2, count);
Mat inliers;
if(_inliers.needed())
{
_inliers.create(count, 1, CV_8U, -1, true);
inliers = _inliers.getMat();
}
// run robust estimation
Ptr<PointSetRegistrator::Callback> cb = makePtr<AffinePartial2DEstimatorCallback>();
if( method == RANSAC )
result = createRANSACPointSetRegistrator(cb, 2, ransacReprojThreshold, confidence, static_cast<int>(maxIters))->run(from, to, H, inliers);
else if( method == LMEDS )
result = createLMeDSPointSetRegistrator(cb, 2, confidence, static_cast<int>(maxIters))->run(from, to, H, inliers);
else
CV_Error(Error::StsBadArg, "Unknown or unsupported robust estimation method");
if(result && count > 2 && refineIters)
{
// reorder to start with inliers
compressElems(from.ptr<Point2f>(), inliers.ptr<uchar>(), 1, count);
int inliers_count = compressElems(to.ptr<Point2f>(), inliers.ptr<uchar>(), 1, count);
if(inliers_count > 0)
{
Mat src = from.rowRange(0, inliers_count);
Mat dst = to.rowRange(0, inliers_count);
// H is
// a -b tx
// b a ty
// Hvec model for LevMarq is
// (a, b, tx, ty)
double *Hptr = H.ptr<double>();
double Hvec_buf[4] = {Hptr[0], Hptr[3], Hptr[2], Hptr[5]};
Mat Hvec (4, 1, CV_64F, Hvec_buf);
createLMSolver(makePtr<AffinePartial2DRefineCallback>(src, dst), static_cast<int>(refineIters))->run(Hvec);
// update H with refined parameters
Hptr[0] = Hptr[4] = Hvec_buf[0];
Hptr[1] = -Hvec_buf[1];
Hptr[2] = Hvec_buf[2];
Hptr[3] = Hvec_buf[1];
Hptr[5] = Hvec_buf[3];
}
}
if (!result)
{
H.release();
if(_inliers.needed())
{
inliers = Mat::zeros(count, 1, CV_8U);
inliers.copyTo(_inliers);
}
}
return H;
}
} // namespace cv