mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
170 lines
5.4 KiB
170 lines
5.4 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// (3-clause BSD License) |
|
// |
|
// Copyright (C) 2015-2016, OpenCV Foundation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistributions of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistributions in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * Neither the names of the copyright holders nor the names of the contributors |
|
// may be used to endorse or promote products derived from this software |
|
// without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall copyright holders or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "perf_precomp.hpp" |
|
#include <algorithm> |
|
#include <functional> |
|
|
|
namespace cvtest |
|
{ |
|
|
|
using std::tr1::tuple; |
|
using std::tr1::get; |
|
using namespace perf; |
|
using namespace testing; |
|
using namespace cv; |
|
|
|
CV_ENUM(Method, RANSAC, LMEDS) |
|
typedef tuple<int, double, Method, size_t> AffineParams; |
|
typedef TestBaseWithParam<AffineParams> EstimateAffine; |
|
#define ESTIMATE_PARAMS Combine(Values(100000, 5000, 100), Values(0.99, 0.95, 0.9), Method::all(), Values(10, 0)) |
|
|
|
static float rngIn(float from, float to) { return from + (to-from) * (float)theRNG(); } |
|
|
|
static Mat rngPartialAffMat() { |
|
double theta = rngIn(0, (float)CV_PI*2.f); |
|
double scale = rngIn(0, 3); |
|
double tx = rngIn(-2, 2); |
|
double ty = rngIn(-2, 2); |
|
double aff[2*3] = { std::cos(theta) * scale, -std::sin(theta) * scale, tx, |
|
std::sin(theta) * scale, std::cos(theta) * scale, ty }; |
|
return Mat(2, 3, CV_64F, aff).clone(); |
|
} |
|
|
|
PERF_TEST_P( EstimateAffine, EstimateAffine2D, ESTIMATE_PARAMS ) |
|
{ |
|
AffineParams params = GetParam(); |
|
const int n = get<0>(params); |
|
const double confidence = get<1>(params); |
|
const int method = get<2>(params); |
|
const size_t refining = get<3>(params); |
|
|
|
Mat aff(2, 3, CV_64F); |
|
cv::randu(aff, -2., 2.); |
|
|
|
// LMEDS can't handle more than 50% outliers (by design) |
|
int m; |
|
if (method == LMEDS) |
|
m = 3*n/5; |
|
else |
|
m = 2*n/5; |
|
const float shift_outl = 15.f; |
|
const float noise_level = 20.f; |
|
|
|
Mat fpts(1, n, CV_32FC2); |
|
Mat tpts(1, n, CV_32FC2); |
|
|
|
randu(fpts, 0., 100.); |
|
transform(fpts, tpts, aff); |
|
|
|
/* adding noise to some points */ |
|
Mat outliers = tpts.colRange(m, n); |
|
outliers.reshape(1) += shift_outl; |
|
|
|
Mat noise (outliers.size(), outliers.type()); |
|
randu(noise, 0., noise_level); |
|
outliers += noise; |
|
|
|
Mat aff_est; |
|
vector<uchar> inliers (n); |
|
|
|
warmup(inliers, WARMUP_WRITE); |
|
warmup(fpts, WARMUP_READ); |
|
warmup(tpts, WARMUP_READ); |
|
|
|
TEST_CYCLE() |
|
{ |
|
aff_est = estimateAffine2D(fpts, tpts, inliers, method, 3, 2000, confidence, refining); |
|
} |
|
|
|
// we already have accuracy tests |
|
SANITY_CHECK_NOTHING(); |
|
} |
|
|
|
PERF_TEST_P( EstimateAffine, EstimateAffinePartial2D, ESTIMATE_PARAMS ) |
|
{ |
|
AffineParams params = GetParam(); |
|
const int n = get<0>(params); |
|
const double confidence = get<1>(params); |
|
const int method = get<2>(params); |
|
const size_t refining = get<3>(params); |
|
|
|
Mat aff = rngPartialAffMat(); |
|
|
|
int m; |
|
// LMEDS can't handle more than 50% outliers (by design) |
|
if (method == LMEDS) |
|
m = 3*n/5; |
|
else |
|
m = 2*n/5; |
|
const float shift_outl = 15.f; const float noise_level = 20.f; |
|
|
|
Mat fpts(1, n, CV_32FC2); |
|
Mat tpts(1, n, CV_32FC2); |
|
|
|
randu(fpts, 0., 100.); |
|
transform(fpts, tpts, aff); |
|
|
|
/* adding noise*/ |
|
Mat outliers = tpts.colRange(m, n); |
|
outliers.reshape(1) += shift_outl; |
|
|
|
Mat noise (outliers.size(), outliers.type()); |
|
randu(noise, 0., noise_level); |
|
outliers += noise; |
|
|
|
Mat aff_est; |
|
vector<uchar> inliers (n); |
|
|
|
warmup(inliers, WARMUP_WRITE); |
|
warmup(fpts, WARMUP_READ); |
|
warmup(tpts, WARMUP_READ); |
|
|
|
TEST_CYCLE() |
|
{ |
|
aff_est = estimateAffinePartial2D(fpts, tpts, inliers, method, 3, 2000, confidence, refining); |
|
} |
|
|
|
// we already have accuracy tests |
|
SANITY_CHECK_NOTHING(); |
|
} |
|
|
|
} // namespace cvtest
|
|
|