mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
231 lines
6.0 KiB
231 lines
6.0 KiB
/* dorml2.f -- translated by f2c (version 20061008). |
|
You must link the resulting object file with libf2c: |
|
on Microsoft Windows system, link with libf2c.lib; |
|
on Linux or Unix systems, link with .../path/to/libf2c.a -lm |
|
or, if you install libf2c.a in a standard place, with -lf2c -lm |
|
-- in that order, at the end of the command line, as in |
|
cc *.o -lf2c -lm |
|
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., |
|
|
|
http://www.netlib.org/f2c/libf2c.zip |
|
*/ |
|
|
|
#include "clapack.h" |
|
|
|
|
|
/* Subroutine */ int dorml2_(char *side, char *trans, integer *m, integer *n, |
|
integer *k, doublereal *a, integer *lda, doublereal *tau, doublereal * |
|
c__, integer *ldc, doublereal *work, integer *info) |
|
{ |
|
/* System generated locals */ |
|
integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2; |
|
|
|
/* Local variables */ |
|
integer i__, i1, i2, i3, ic, jc, mi, ni, nq; |
|
doublereal aii; |
|
logical left; |
|
extern /* Subroutine */ int dlarf_(char *, integer *, integer *, |
|
doublereal *, integer *, doublereal *, doublereal *, integer *, |
|
doublereal *); |
|
extern logical lsame_(char *, char *); |
|
extern /* Subroutine */ int xerbla_(char *, integer *); |
|
logical notran; |
|
|
|
|
|
/* -- LAPACK routine (version 3.2) -- */ |
|
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ |
|
/* November 2006 */ |
|
|
|
/* .. Scalar Arguments .. */ |
|
/* .. */ |
|
/* .. Array Arguments .. */ |
|
/* .. */ |
|
|
|
/* Purpose */ |
|
/* ======= */ |
|
|
|
/* DORML2 overwrites the general real m by n matrix C with */ |
|
|
|
/* Q * C if SIDE = 'L' and TRANS = 'N', or */ |
|
|
|
/* Q'* C if SIDE = 'L' and TRANS = 'T', or */ |
|
|
|
/* C * Q if SIDE = 'R' and TRANS = 'N', or */ |
|
|
|
/* C * Q' if SIDE = 'R' and TRANS = 'T', */ |
|
|
|
/* where Q is a real orthogonal matrix defined as the product of k */ |
|
/* elementary reflectors */ |
|
|
|
/* Q = H(k) . . . H(2) H(1) */ |
|
|
|
/* as returned by DGELQF. Q is of order m if SIDE = 'L' and of order n */ |
|
/* if SIDE = 'R'. */ |
|
|
|
/* Arguments */ |
|
/* ========= */ |
|
|
|
/* SIDE (input) CHARACTER*1 */ |
|
/* = 'L': apply Q or Q' from the Left */ |
|
/* = 'R': apply Q or Q' from the Right */ |
|
|
|
/* TRANS (input) CHARACTER*1 */ |
|
/* = 'N': apply Q (No transpose) */ |
|
/* = 'T': apply Q' (Transpose) */ |
|
|
|
/* M (input) INTEGER */ |
|
/* The number of rows of the matrix C. M >= 0. */ |
|
|
|
/* N (input) INTEGER */ |
|
/* The number of columns of the matrix C. N >= 0. */ |
|
|
|
/* K (input) INTEGER */ |
|
/* The number of elementary reflectors whose product defines */ |
|
/* the matrix Q. */ |
|
/* If SIDE = 'L', M >= K >= 0; */ |
|
/* if SIDE = 'R', N >= K >= 0. */ |
|
|
|
/* A (input) DOUBLE PRECISION array, dimension */ |
|
/* (LDA,M) if SIDE = 'L', */ |
|
/* (LDA,N) if SIDE = 'R' */ |
|
/* The i-th row must contain the vector which defines the */ |
|
/* elementary reflector H(i), for i = 1,2,...,k, as returned by */ |
|
/* DGELQF in the first k rows of its array argument A. */ |
|
/* A is modified by the routine but restored on exit. */ |
|
|
|
/* LDA (input) INTEGER */ |
|
/* The leading dimension of the array A. LDA >= max(1,K). */ |
|
|
|
/* TAU (input) DOUBLE PRECISION array, dimension (K) */ |
|
/* TAU(i) must contain the scalar factor of the elementary */ |
|
/* reflector H(i), as returned by DGELQF. */ |
|
|
|
/* C (input/output) DOUBLE PRECISION array, dimension (LDC,N) */ |
|
/* On entry, the m by n matrix C. */ |
|
/* On exit, C is overwritten by Q*C or Q'*C or C*Q' or C*Q. */ |
|
|
|
/* LDC (input) INTEGER */ |
|
/* The leading dimension of the array C. LDC >= max(1,M). */ |
|
|
|
/* WORK (workspace) DOUBLE PRECISION array, dimension */ |
|
/* (N) if SIDE = 'L', */ |
|
/* (M) if SIDE = 'R' */ |
|
|
|
/* INFO (output) INTEGER */ |
|
/* = 0: successful exit */ |
|
/* < 0: if INFO = -i, the i-th argument had an illegal value */ |
|
|
|
/* ===================================================================== */ |
|
|
|
/* .. Parameters .. */ |
|
/* .. */ |
|
/* .. Local Scalars .. */ |
|
/* .. */ |
|
/* .. External Functions .. */ |
|
/* .. */ |
|
/* .. External Subroutines .. */ |
|
/* .. */ |
|
/* .. Intrinsic Functions .. */ |
|
/* .. */ |
|
/* .. Executable Statements .. */ |
|
|
|
/* Test the input arguments */ |
|
|
|
/* Parameter adjustments */ |
|
a_dim1 = *lda; |
|
a_offset = 1 + a_dim1; |
|
a -= a_offset; |
|
--tau; |
|
c_dim1 = *ldc; |
|
c_offset = 1 + c_dim1; |
|
c__ -= c_offset; |
|
--work; |
|
|
|
/* Function Body */ |
|
*info = 0; |
|
left = lsame_(side, "L"); |
|
notran = lsame_(trans, "N"); |
|
|
|
/* NQ is the order of Q */ |
|
|
|
if (left) { |
|
nq = *m; |
|
} else { |
|
nq = *n; |
|
} |
|
if (! left && ! lsame_(side, "R")) { |
|
*info = -1; |
|
} else if (! notran && ! lsame_(trans, "T")) { |
|
*info = -2; |
|
} else if (*m < 0) { |
|
*info = -3; |
|
} else if (*n < 0) { |
|
*info = -4; |
|
} else if (*k < 0 || *k > nq) { |
|
*info = -5; |
|
} else if (*lda < max(1,*k)) { |
|
*info = -7; |
|
} else if (*ldc < max(1,*m)) { |
|
*info = -10; |
|
} |
|
if (*info != 0) { |
|
i__1 = -(*info); |
|
xerbla_("DORML2", &i__1); |
|
return 0; |
|
} |
|
|
|
/* Quick return if possible */ |
|
|
|
if (*m == 0 || *n == 0 || *k == 0) { |
|
return 0; |
|
} |
|
|
|
if (left && notran || ! left && ! notran) { |
|
i1 = 1; |
|
i2 = *k; |
|
i3 = 1; |
|
} else { |
|
i1 = *k; |
|
i2 = 1; |
|
i3 = -1; |
|
} |
|
|
|
if (left) { |
|
ni = *n; |
|
jc = 1; |
|
} else { |
|
mi = *m; |
|
ic = 1; |
|
} |
|
|
|
i__1 = i2; |
|
i__2 = i3; |
|
for (i__ = i1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) { |
|
if (left) { |
|
|
|
/* H(i) is applied to C(i:m,1:n) */ |
|
|
|
mi = *m - i__ + 1; |
|
ic = i__; |
|
} else { |
|
|
|
/* H(i) is applied to C(1:m,i:n) */ |
|
|
|
ni = *n - i__ + 1; |
|
jc = i__; |
|
} |
|
|
|
/* Apply H(i) */ |
|
|
|
aii = a[i__ + i__ * a_dim1]; |
|
a[i__ + i__ * a_dim1] = 1.; |
|
dlarf_(side, &mi, &ni, &a[i__ + i__ * a_dim1], lda, &tau[i__], &c__[ |
|
ic + jc * c_dim1], ldc, &work[1]); |
|
a[i__ + i__ * a_dim1] = aii; |
|
/* L10: */ |
|
} |
|
return 0; |
|
|
|
/* End of DORML2 */ |
|
|
|
} /* dorml2_ */
|
|
|