mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
224 lines
6.5 KiB
224 lines
6.5 KiB
/* dlagtf.f -- translated by f2c (version 20061008). |
|
You must link the resulting object file with libf2c: |
|
on Microsoft Windows system, link with libf2c.lib; |
|
on Linux or Unix systems, link with .../path/to/libf2c.a -lm |
|
or, if you install libf2c.a in a standard place, with -lf2c -lm |
|
-- in that order, at the end of the command line, as in |
|
cc *.o -lf2c -lm |
|
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., |
|
|
|
http://www.netlib.org/f2c/libf2c.zip |
|
*/ |
|
|
|
#include "clapack.h" |
|
|
|
|
|
/* Subroutine */ int dlagtf_(integer *n, doublereal *a, doublereal *lambda, |
|
doublereal *b, doublereal *c__, doublereal *tol, doublereal *d__, |
|
integer *in, integer *info) |
|
{ |
|
/* System generated locals */ |
|
integer i__1; |
|
doublereal d__1, d__2; |
|
|
|
/* Local variables */ |
|
integer k; |
|
doublereal tl, eps, piv1, piv2, temp, mult, scale1, scale2; |
|
extern doublereal dlamch_(char *); |
|
extern /* Subroutine */ int xerbla_(char *, integer *); |
|
|
|
|
|
/* -- LAPACK routine (version 3.2) -- */ |
|
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ |
|
/* November 2006 */ |
|
|
|
/* .. Scalar Arguments .. */ |
|
/* .. */ |
|
/* .. Array Arguments .. */ |
|
/* .. */ |
|
|
|
/* Purpose */ |
|
/* ======= */ |
|
|
|
/* DLAGTF factorizes the matrix (T - lambda*I), where T is an n by n */ |
|
/* tridiagonal matrix and lambda is a scalar, as */ |
|
|
|
/* T - lambda*I = PLU, */ |
|
|
|
/* where P is a permutation matrix, L is a unit lower tridiagonal matrix */ |
|
/* with at most one non-zero sub-diagonal elements per column and U is */ |
|
/* an upper triangular matrix with at most two non-zero super-diagonal */ |
|
/* elements per column. */ |
|
|
|
/* The factorization is obtained by Gaussian elimination with partial */ |
|
/* pivoting and implicit row scaling. */ |
|
|
|
/* The parameter LAMBDA is included in the routine so that DLAGTF may */ |
|
/* be used, in conjunction with DLAGTS, to obtain eigenvectors of T by */ |
|
/* inverse iteration. */ |
|
|
|
/* Arguments */ |
|
/* ========= */ |
|
|
|
/* N (input) INTEGER */ |
|
/* The order of the matrix T. */ |
|
|
|
/* A (input/output) DOUBLE PRECISION array, dimension (N) */ |
|
/* On entry, A must contain the diagonal elements of T. */ |
|
|
|
/* On exit, A is overwritten by the n diagonal elements of the */ |
|
/* upper triangular matrix U of the factorization of T. */ |
|
|
|
/* LAMBDA (input) DOUBLE PRECISION */ |
|
/* On entry, the scalar lambda. */ |
|
|
|
/* B (input/output) DOUBLE PRECISION array, dimension (N-1) */ |
|
/* On entry, B must contain the (n-1) super-diagonal elements of */ |
|
/* T. */ |
|
|
|
/* On exit, B is overwritten by the (n-1) super-diagonal */ |
|
/* elements of the matrix U of the factorization of T. */ |
|
|
|
/* C (input/output) DOUBLE PRECISION array, dimension (N-1) */ |
|
/* On entry, C must contain the (n-1) sub-diagonal elements of */ |
|
/* T. */ |
|
|
|
/* On exit, C is overwritten by the (n-1) sub-diagonal elements */ |
|
/* of the matrix L of the factorization of T. */ |
|
|
|
/* TOL (input) DOUBLE PRECISION */ |
|
/* On entry, a relative tolerance used to indicate whether or */ |
|
/* not the matrix (T - lambda*I) is nearly singular. TOL should */ |
|
/* normally be chose as approximately the largest relative error */ |
|
/* in the elements of T. For example, if the elements of T are */ |
|
/* correct to about 4 significant figures, then TOL should be */ |
|
/* set to about 5*10**(-4). If TOL is supplied as less than eps, */ |
|
/* where eps is the relative machine precision, then the value */ |
|
/* eps is used in place of TOL. */ |
|
|
|
/* D (output) DOUBLE PRECISION array, dimension (N-2) */ |
|
/* On exit, D is overwritten by the (n-2) second super-diagonal */ |
|
/* elements of the matrix U of the factorization of T. */ |
|
|
|
/* IN (output) INTEGER array, dimension (N) */ |
|
/* On exit, IN contains details of the permutation matrix P. If */ |
|
/* an interchange occurred at the kth step of the elimination, */ |
|
/* then IN(k) = 1, otherwise IN(k) = 0. The element IN(n) */ |
|
/* returns the smallest positive integer j such that */ |
|
|
|
/* abs( u(j,j) ).le. norm( (T - lambda*I)(j) )*TOL, */ |
|
|
|
/* where norm( A(j) ) denotes the sum of the absolute values of */ |
|
/* the jth row of the matrix A. If no such j exists then IN(n) */ |
|
/* is returned as zero. If IN(n) is returned as positive, then a */ |
|
/* diagonal element of U is small, indicating that */ |
|
/* (T - lambda*I) is singular or nearly singular, */ |
|
|
|
/* INFO (output) INTEGER */ |
|
/* = 0 : successful exit */ |
|
/* .lt. 0: if INFO = -k, the kth argument had an illegal value */ |
|
|
|
/* ===================================================================== */ |
|
|
|
/* .. Parameters .. */ |
|
/* .. */ |
|
/* .. Local Scalars .. */ |
|
/* .. */ |
|
/* .. Intrinsic Functions .. */ |
|
/* .. */ |
|
/* .. External Functions .. */ |
|
/* .. */ |
|
/* .. External Subroutines .. */ |
|
/* .. */ |
|
/* .. Executable Statements .. */ |
|
|
|
/* Parameter adjustments */ |
|
--in; |
|
--d__; |
|
--c__; |
|
--b; |
|
--a; |
|
|
|
/* Function Body */ |
|
*info = 0; |
|
if (*n < 0) { |
|
*info = -1; |
|
i__1 = -(*info); |
|
xerbla_("DLAGTF", &i__1); |
|
return 0; |
|
} |
|
|
|
if (*n == 0) { |
|
return 0; |
|
} |
|
|
|
a[1] -= *lambda; |
|
in[*n] = 0; |
|
if (*n == 1) { |
|
if (a[1] == 0.) { |
|
in[1] = 1; |
|
} |
|
return 0; |
|
} |
|
|
|
eps = dlamch_("Epsilon"); |
|
|
|
tl = max(*tol,eps); |
|
scale1 = abs(a[1]) + abs(b[1]); |
|
i__1 = *n - 1; |
|
for (k = 1; k <= i__1; ++k) { |
|
a[k + 1] -= *lambda; |
|
scale2 = (d__1 = c__[k], abs(d__1)) + (d__2 = a[k + 1], abs(d__2)); |
|
if (k < *n - 1) { |
|
scale2 += (d__1 = b[k + 1], abs(d__1)); |
|
} |
|
if (a[k] == 0.) { |
|
piv1 = 0.; |
|
} else { |
|
piv1 = (d__1 = a[k], abs(d__1)) / scale1; |
|
} |
|
if (c__[k] == 0.) { |
|
in[k] = 0; |
|
piv2 = 0.; |
|
scale1 = scale2; |
|
if (k < *n - 1) { |
|
d__[k] = 0.; |
|
} |
|
} else { |
|
piv2 = (d__1 = c__[k], abs(d__1)) / scale2; |
|
if (piv2 <= piv1) { |
|
in[k] = 0; |
|
scale1 = scale2; |
|
c__[k] /= a[k]; |
|
a[k + 1] -= c__[k] * b[k]; |
|
if (k < *n - 1) { |
|
d__[k] = 0.; |
|
} |
|
} else { |
|
in[k] = 1; |
|
mult = a[k] / c__[k]; |
|
a[k] = c__[k]; |
|
temp = a[k + 1]; |
|
a[k + 1] = b[k] - mult * temp; |
|
if (k < *n - 1) { |
|
d__[k] = b[k + 1]; |
|
b[k + 1] = -mult * d__[k]; |
|
} |
|
b[k] = temp; |
|
c__[k] = mult; |
|
} |
|
} |
|
if (max(piv1,piv2) <= tl && in[*n] == 0) { |
|
in[*n] = k; |
|
} |
|
/* L10: */ |
|
} |
|
if ((d__1 = a[*n], abs(d__1)) <= scale1 * tl && in[*n] == 0) { |
|
in[*n] = *n; |
|
} |
|
|
|
return 0; |
|
|
|
/* End of DLAGTF */ |
|
|
|
} /* dlagtf_ */
|
|
|