mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
440 lines
13 KiB
440 lines
13 KiB
/* dlaed0.f -- translated by f2c (version 20061008). |
|
You must link the resulting object file with libf2c: |
|
on Microsoft Windows system, link with libf2c.lib; |
|
on Linux or Unix systems, link with .../path/to/libf2c.a -lm |
|
or, if you install libf2c.a in a standard place, with -lf2c -lm |
|
-- in that order, at the end of the command line, as in |
|
cc *.o -lf2c -lm |
|
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., |
|
|
|
http://www.netlib.org/f2c/libf2c.zip |
|
*/ |
|
|
|
#include "clapack.h" |
|
|
|
|
|
/* Table of constant values */ |
|
|
|
static integer c__9 = 9; |
|
static integer c__0 = 0; |
|
static integer c__2 = 2; |
|
static doublereal c_b23 = 1.; |
|
static doublereal c_b24 = 0.; |
|
static integer c__1 = 1; |
|
|
|
/* Subroutine */ int dlaed0_(integer *icompq, integer *qsiz, integer *n, |
|
doublereal *d__, doublereal *e, doublereal *q, integer *ldq, |
|
doublereal *qstore, integer *ldqs, doublereal *work, integer *iwork, |
|
integer *info) |
|
{ |
|
/* System generated locals */ |
|
integer q_dim1, q_offset, qstore_dim1, qstore_offset, i__1, i__2; |
|
doublereal d__1; |
|
|
|
/* Builtin functions */ |
|
double log(doublereal); |
|
integer pow_ii(integer *, integer *); |
|
|
|
/* Local variables */ |
|
integer i__, j, k, iq, lgn, msd2, smm1, spm1, spm2; |
|
doublereal temp; |
|
integer curr; |
|
extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *, |
|
integer *, doublereal *, doublereal *, integer *, doublereal *, |
|
integer *, doublereal *, doublereal *, integer *); |
|
integer iperm; |
|
extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, |
|
doublereal *, integer *); |
|
integer indxq, iwrem; |
|
extern /* Subroutine */ int dlaed1_(integer *, doublereal *, doublereal *, |
|
integer *, integer *, doublereal *, integer *, doublereal *, |
|
integer *, integer *); |
|
integer iqptr; |
|
extern /* Subroutine */ int dlaed7_(integer *, integer *, integer *, |
|
integer *, integer *, integer *, doublereal *, doublereal *, |
|
integer *, integer *, doublereal *, integer *, doublereal *, |
|
integer *, integer *, integer *, integer *, integer *, doublereal |
|
*, doublereal *, integer *, integer *); |
|
integer tlvls; |
|
extern /* Subroutine */ int dlacpy_(char *, integer *, integer *, |
|
doublereal *, integer *, doublereal *, integer *); |
|
integer igivcl; |
|
extern /* Subroutine */ int xerbla_(char *, integer *); |
|
extern integer ilaenv_(integer *, char *, char *, integer *, integer *, |
|
integer *, integer *); |
|
integer igivnm, submat, curprb, subpbs, igivpt; |
|
extern /* Subroutine */ int dsteqr_(char *, integer *, doublereal *, |
|
doublereal *, doublereal *, integer *, doublereal *, integer *); |
|
integer curlvl, matsiz, iprmpt, smlsiz; |
|
|
|
|
|
/* -- LAPACK routine (version 3.2) -- */ |
|
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ |
|
/* November 2006 */ |
|
|
|
/* .. Scalar Arguments .. */ |
|
/* .. */ |
|
/* .. Array Arguments .. */ |
|
/* .. */ |
|
|
|
/* Purpose */ |
|
/* ======= */ |
|
|
|
/* DLAED0 computes all eigenvalues and corresponding eigenvectors of a */ |
|
/* symmetric tridiagonal matrix using the divide and conquer method. */ |
|
|
|
/* Arguments */ |
|
/* ========= */ |
|
|
|
/* ICOMPQ (input) INTEGER */ |
|
/* = 0: Compute eigenvalues only. */ |
|
/* = 1: Compute eigenvectors of original dense symmetric matrix */ |
|
/* also. On entry, Q contains the orthogonal matrix used */ |
|
/* to reduce the original matrix to tridiagonal form. */ |
|
/* = 2: Compute eigenvalues and eigenvectors of tridiagonal */ |
|
/* matrix. */ |
|
|
|
/* QSIZ (input) INTEGER */ |
|
/* The dimension of the orthogonal matrix used to reduce */ |
|
/* the full matrix to tridiagonal form. QSIZ >= N if ICOMPQ = 1. */ |
|
|
|
/* N (input) INTEGER */ |
|
/* The dimension of the symmetric tridiagonal matrix. N >= 0. */ |
|
|
|
/* D (input/output) DOUBLE PRECISION array, dimension (N) */ |
|
/* On entry, the main diagonal of the tridiagonal matrix. */ |
|
/* On exit, its eigenvalues. */ |
|
|
|
/* E (input) DOUBLE PRECISION array, dimension (N-1) */ |
|
/* The off-diagonal elements of the tridiagonal matrix. */ |
|
/* On exit, E has been destroyed. */ |
|
|
|
/* Q (input/output) DOUBLE PRECISION array, dimension (LDQ, N) */ |
|
/* On entry, Q must contain an N-by-N orthogonal matrix. */ |
|
/* If ICOMPQ = 0 Q is not referenced. */ |
|
/* If ICOMPQ = 1 On entry, Q is a subset of the columns of the */ |
|
/* orthogonal matrix used to reduce the full */ |
|
/* matrix to tridiagonal form corresponding to */ |
|
/* the subset of the full matrix which is being */ |
|
/* decomposed at this time. */ |
|
/* If ICOMPQ = 2 On entry, Q will be the identity matrix. */ |
|
/* On exit, Q contains the eigenvectors of the */ |
|
/* tridiagonal matrix. */ |
|
|
|
/* LDQ (input) INTEGER */ |
|
/* The leading dimension of the array Q. If eigenvectors are */ |
|
/* desired, then LDQ >= max(1,N). In any case, LDQ >= 1. */ |
|
|
|
/* QSTORE (workspace) DOUBLE PRECISION array, dimension (LDQS, N) */ |
|
/* Referenced only when ICOMPQ = 1. Used to store parts of */ |
|
/* the eigenvector matrix when the updating matrix multiplies */ |
|
/* take place. */ |
|
|
|
/* LDQS (input) INTEGER */ |
|
/* The leading dimension of the array QSTORE. If ICOMPQ = 1, */ |
|
/* then LDQS >= max(1,N). In any case, LDQS >= 1. */ |
|
|
|
/* WORK (workspace) DOUBLE PRECISION array, */ |
|
/* If ICOMPQ = 0 or 1, the dimension of WORK must be at least */ |
|
/* 1 + 3*N + 2*N*lg N + 2*N**2 */ |
|
/* ( lg( N ) = smallest integer k */ |
|
/* such that 2^k >= N ) */ |
|
/* If ICOMPQ = 2, the dimension of WORK must be at least */ |
|
/* 4*N + N**2. */ |
|
|
|
/* IWORK (workspace) INTEGER array, */ |
|
/* If ICOMPQ = 0 or 1, the dimension of IWORK must be at least */ |
|
/* 6 + 6*N + 5*N*lg N. */ |
|
/* ( lg( N ) = smallest integer k */ |
|
/* such that 2^k >= N ) */ |
|
/* If ICOMPQ = 2, the dimension of IWORK must be at least */ |
|
/* 3 + 5*N. */ |
|
|
|
/* INFO (output) INTEGER */ |
|
/* = 0: successful exit. */ |
|
/* < 0: if INFO = -i, the i-th argument had an illegal value. */ |
|
/* > 0: The algorithm failed to compute an eigenvalue while */ |
|
/* working on the submatrix lying in rows and columns */ |
|
/* INFO/(N+1) through mod(INFO,N+1). */ |
|
|
|
/* Further Details */ |
|
/* =============== */ |
|
|
|
/* Based on contributions by */ |
|
/* Jeff Rutter, Computer Science Division, University of California */ |
|
/* at Berkeley, USA */ |
|
|
|
/* ===================================================================== */ |
|
|
|
/* .. Parameters .. */ |
|
/* .. */ |
|
/* .. Local Scalars .. */ |
|
/* .. */ |
|
/* .. External Subroutines .. */ |
|
/* .. */ |
|
/* .. External Functions .. */ |
|
/* .. */ |
|
/* .. Intrinsic Functions .. */ |
|
/* .. */ |
|
/* .. Executable Statements .. */ |
|
|
|
/* Test the input parameters. */ |
|
|
|
/* Parameter adjustments */ |
|
--d__; |
|
--e; |
|
q_dim1 = *ldq; |
|
q_offset = 1 + q_dim1; |
|
q -= q_offset; |
|
qstore_dim1 = *ldqs; |
|
qstore_offset = 1 + qstore_dim1; |
|
qstore -= qstore_offset; |
|
--work; |
|
--iwork; |
|
|
|
/* Function Body */ |
|
*info = 0; |
|
|
|
if (*icompq < 0 || *icompq > 2) { |
|
*info = -1; |
|
} else if (*icompq == 1 && *qsiz < max(0,*n)) { |
|
*info = -2; |
|
} else if (*n < 0) { |
|
*info = -3; |
|
} else if (*ldq < max(1,*n)) { |
|
*info = -7; |
|
} else if (*ldqs < max(1,*n)) { |
|
*info = -9; |
|
} |
|
if (*info != 0) { |
|
i__1 = -(*info); |
|
xerbla_("DLAED0", &i__1); |
|
return 0; |
|
} |
|
|
|
/* Quick return if possible */ |
|
|
|
if (*n == 0) { |
|
return 0; |
|
} |
|
|
|
smlsiz = ilaenv_(&c__9, "DLAED0", " ", &c__0, &c__0, &c__0, &c__0); |
|
|
|
/* Determine the size and placement of the submatrices, and save in */ |
|
/* the leading elements of IWORK. */ |
|
|
|
iwork[1] = *n; |
|
subpbs = 1; |
|
tlvls = 0; |
|
L10: |
|
if (iwork[subpbs] > smlsiz) { |
|
for (j = subpbs; j >= 1; --j) { |
|
iwork[j * 2] = (iwork[j] + 1) / 2; |
|
iwork[(j << 1) - 1] = iwork[j] / 2; |
|
/* L20: */ |
|
} |
|
++tlvls; |
|
subpbs <<= 1; |
|
goto L10; |
|
} |
|
i__1 = subpbs; |
|
for (j = 2; j <= i__1; ++j) { |
|
iwork[j] += iwork[j - 1]; |
|
/* L30: */ |
|
} |
|
|
|
/* Divide the matrix into SUBPBS submatrices of size at most SMLSIZ+1 */ |
|
/* using rank-1 modifications (cuts). */ |
|
|
|
spm1 = subpbs - 1; |
|
i__1 = spm1; |
|
for (i__ = 1; i__ <= i__1; ++i__) { |
|
submat = iwork[i__] + 1; |
|
smm1 = submat - 1; |
|
d__[smm1] -= (d__1 = e[smm1], abs(d__1)); |
|
d__[submat] -= (d__1 = e[smm1], abs(d__1)); |
|
/* L40: */ |
|
} |
|
|
|
indxq = (*n << 2) + 3; |
|
if (*icompq != 2) { |
|
|
|
/* Set up workspaces for eigenvalues only/accumulate new vectors */ |
|
/* routine */ |
|
|
|
temp = log((doublereal) (*n)) / log(2.); |
|
lgn = (integer) temp; |
|
if (pow_ii(&c__2, &lgn) < *n) { |
|
++lgn; |
|
} |
|
if (pow_ii(&c__2, &lgn) < *n) { |
|
++lgn; |
|
} |
|
iprmpt = indxq + *n + 1; |
|
iperm = iprmpt + *n * lgn; |
|
iqptr = iperm + *n * lgn; |
|
igivpt = iqptr + *n + 2; |
|
igivcl = igivpt + *n * lgn; |
|
|
|
igivnm = 1; |
|
iq = igivnm + (*n << 1) * lgn; |
|
/* Computing 2nd power */ |
|
i__1 = *n; |
|
iwrem = iq + i__1 * i__1 + 1; |
|
|
|
/* Initialize pointers */ |
|
|
|
i__1 = subpbs; |
|
for (i__ = 0; i__ <= i__1; ++i__) { |
|
iwork[iprmpt + i__] = 1; |
|
iwork[igivpt + i__] = 1; |
|
/* L50: */ |
|
} |
|
iwork[iqptr] = 1; |
|
} |
|
|
|
/* Solve each submatrix eigenproblem at the bottom of the divide and */ |
|
/* conquer tree. */ |
|
|
|
curr = 0; |
|
i__1 = spm1; |
|
for (i__ = 0; i__ <= i__1; ++i__) { |
|
if (i__ == 0) { |
|
submat = 1; |
|
matsiz = iwork[1]; |
|
} else { |
|
submat = iwork[i__] + 1; |
|
matsiz = iwork[i__ + 1] - iwork[i__]; |
|
} |
|
if (*icompq == 2) { |
|
dsteqr_("I", &matsiz, &d__[submat], &e[submat], &q[submat + |
|
submat * q_dim1], ldq, &work[1], info); |
|
if (*info != 0) { |
|
goto L130; |
|
} |
|
} else { |
|
dsteqr_("I", &matsiz, &d__[submat], &e[submat], &work[iq - 1 + |
|
iwork[iqptr + curr]], &matsiz, &work[1], info); |
|
if (*info != 0) { |
|
goto L130; |
|
} |
|
if (*icompq == 1) { |
|
dgemm_("N", "N", qsiz, &matsiz, &matsiz, &c_b23, &q[submat * |
|
q_dim1 + 1], ldq, &work[iq - 1 + iwork[iqptr + curr]], |
|
&matsiz, &c_b24, &qstore[submat * qstore_dim1 + 1], |
|
ldqs); |
|
} |
|
/* Computing 2nd power */ |
|
i__2 = matsiz; |
|
iwork[iqptr + curr + 1] = iwork[iqptr + curr] + i__2 * i__2; |
|
++curr; |
|
} |
|
k = 1; |
|
i__2 = iwork[i__ + 1]; |
|
for (j = submat; j <= i__2; ++j) { |
|
iwork[indxq + j] = k; |
|
++k; |
|
/* L60: */ |
|
} |
|
/* L70: */ |
|
} |
|
|
|
/* Successively merge eigensystems of adjacent submatrices */ |
|
/* into eigensystem for the corresponding larger matrix. */ |
|
|
|
/* while ( SUBPBS > 1 ) */ |
|
|
|
curlvl = 1; |
|
L80: |
|
if (subpbs > 1) { |
|
spm2 = subpbs - 2; |
|
i__1 = spm2; |
|
for (i__ = 0; i__ <= i__1; i__ += 2) { |
|
if (i__ == 0) { |
|
submat = 1; |
|
matsiz = iwork[2]; |
|
msd2 = iwork[1]; |
|
curprb = 0; |
|
} else { |
|
submat = iwork[i__] + 1; |
|
matsiz = iwork[i__ + 2] - iwork[i__]; |
|
msd2 = matsiz / 2; |
|
++curprb; |
|
} |
|
|
|
/* Merge lower order eigensystems (of size MSD2 and MATSIZ - MSD2) */ |
|
/* into an eigensystem of size MATSIZ. */ |
|
/* DLAED1 is used only for the full eigensystem of a tridiagonal */ |
|
/* matrix. */ |
|
/* DLAED7 handles the cases in which eigenvalues only or eigenvalues */ |
|
/* and eigenvectors of a full symmetric matrix (which was reduced to */ |
|
/* tridiagonal form) are desired. */ |
|
|
|
if (*icompq == 2) { |
|
dlaed1_(&matsiz, &d__[submat], &q[submat + submat * q_dim1], |
|
ldq, &iwork[indxq + submat], &e[submat + msd2 - 1], & |
|
msd2, &work[1], &iwork[subpbs + 1], info); |
|
} else { |
|
dlaed7_(icompq, &matsiz, qsiz, &tlvls, &curlvl, &curprb, &d__[ |
|
submat], &qstore[submat * qstore_dim1 + 1], ldqs, & |
|
iwork[indxq + submat], &e[submat + msd2 - 1], &msd2, & |
|
work[iq], &iwork[iqptr], &iwork[iprmpt], &iwork[iperm] |
|
, &iwork[igivpt], &iwork[igivcl], &work[igivnm], & |
|
work[iwrem], &iwork[subpbs + 1], info); |
|
} |
|
if (*info != 0) { |
|
goto L130; |
|
} |
|
iwork[i__ / 2 + 1] = iwork[i__ + 2]; |
|
/* L90: */ |
|
} |
|
subpbs /= 2; |
|
++curlvl; |
|
goto L80; |
|
} |
|
|
|
/* end while */ |
|
|
|
/* Re-merge the eigenvalues/vectors which were deflated at the final */ |
|
/* merge step. */ |
|
|
|
if (*icompq == 1) { |
|
i__1 = *n; |
|
for (i__ = 1; i__ <= i__1; ++i__) { |
|
j = iwork[indxq + i__]; |
|
work[i__] = d__[j]; |
|
dcopy_(qsiz, &qstore[j * qstore_dim1 + 1], &c__1, &q[i__ * q_dim1 |
|
+ 1], &c__1); |
|
/* L100: */ |
|
} |
|
dcopy_(n, &work[1], &c__1, &d__[1], &c__1); |
|
} else if (*icompq == 2) { |
|
i__1 = *n; |
|
for (i__ = 1; i__ <= i__1; ++i__) { |
|
j = iwork[indxq + i__]; |
|
work[i__] = d__[j]; |
|
dcopy_(n, &q[j * q_dim1 + 1], &c__1, &work[*n * i__ + 1], &c__1); |
|
/* L110: */ |
|
} |
|
dcopy_(n, &work[1], &c__1, &d__[1], &c__1); |
|
dlacpy_("A", n, n, &work[*n + 1], n, &q[q_offset], ldq); |
|
} else { |
|
i__1 = *n; |
|
for (i__ = 1; i__ <= i__1; ++i__) { |
|
j = iwork[indxq + i__]; |
|
work[i__] = d__[j]; |
|
/* L120: */ |
|
} |
|
dcopy_(n, &work[1], &c__1, &d__[1], &c__1); |
|
} |
|
goto L140; |
|
|
|
L130: |
|
*info = submat * (*n + 1) + submat + matsiz - 1; |
|
|
|
L140: |
|
return 0; |
|
|
|
/* End of DLAED0 */ |
|
|
|
} /* dlaed0_ */
|
|
|