mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
155 lines
6.7 KiB
155 lines
6.7 KiB
import argparse |
|
|
|
import numpy as np |
|
import cv2 as cv |
|
|
|
def str2bool(v): |
|
if v.lower() in ['on', 'yes', 'true', 'y', 't']: |
|
return True |
|
elif v.lower() in ['off', 'no', 'false', 'n', 'f']: |
|
return False |
|
else: |
|
raise NotImplementedError |
|
|
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--image1', '-i1', type=str, help='Path to the input image1. Omit for detecting on default camera.') |
|
parser.add_argument('--image2', '-i2', type=str, help='Path to the input image2. When image1 and image2 parameters given then the program try to find a face on both images and runs face recognition algorithm.') |
|
parser.add_argument('--video', '-v', type=str, help='Path to the input video.') |
|
parser.add_argument('--scale', '-sc', type=float, default=1.0, help='Scale factor used to resize input video frames.') |
|
parser.add_argument('--face_detection_model', '-fd', type=str, default='yunet.onnx', help='Path to the face detection model. Download the model at https://github.com/ShiqiYu/libfacedetection.train/tree/master/tasks/task1/onnx.') |
|
parser.add_argument('--face_recognition_model', '-fr', type=str, default='face_recognizer_fast.onnx', help='Path to the face recognition model. Download the model at https://drive.google.com/file/d/1ClK9WiB492c5OZFKveF3XiHCejoOxINW/view.') |
|
parser.add_argument('--score_threshold', type=float, default=0.9, help='Filtering out faces of score < score_threshold.') |
|
parser.add_argument('--nms_threshold', type=float, default=0.3, help='Suppress bounding boxes of iou >= nms_threshold.') |
|
parser.add_argument('--top_k', type=int, default=5000, help='Keep top_k bounding boxes before NMS.') |
|
parser.add_argument('--save', '-s', type=str2bool, default=False, help='Set true to save results. This flag is invalid when using camera.') |
|
args = parser.parse_args() |
|
|
|
def visualize(input, faces, fps, thickness=2): |
|
if faces[1] is not None: |
|
for idx, face in enumerate(faces[1]): |
|
print('Face {}, top-left coordinates: ({:.0f}, {:.0f}), box width: {:.0f}, box height {:.0f}, score: {:.2f}'.format(idx, face[0], face[1], face[2], face[3], face[-1])) |
|
|
|
coords = face[:-1].astype(np.int32) |
|
cv.rectangle(input, (coords[0], coords[1]), (coords[0]+coords[2], coords[1]+coords[3]), (0, 255, 0), thickness) |
|
cv.circle(input, (coords[4], coords[5]), 2, (255, 0, 0), thickness) |
|
cv.circle(input, (coords[6], coords[7]), 2, (0, 0, 255), thickness) |
|
cv.circle(input, (coords[8], coords[9]), 2, (0, 255, 0), thickness) |
|
cv.circle(input, (coords[10], coords[11]), 2, (255, 0, 255), thickness) |
|
cv.circle(input, (coords[12], coords[13]), 2, (0, 255, 255), thickness) |
|
cv.putText(input, 'FPS: {:.2f}'.format(fps), (1, 16), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2) |
|
|
|
if __name__ == '__main__': |
|
|
|
## [initialize_FaceDetectorYN] |
|
detector = cv.FaceDetectorYN.create( |
|
args.face_detection_model, |
|
"", |
|
(320, 320), |
|
args.score_threshold, |
|
args.nms_threshold, |
|
args.top_k |
|
) |
|
## [initialize_FaceDetectorYN] |
|
|
|
tm = cv.TickMeter() |
|
|
|
# If input is an image |
|
if args.image1 is not None: |
|
img1 = cv.imread(cv.samples.findFile(args.image1)) |
|
|
|
tm.start() |
|
## [inference] |
|
# Set input size before inference |
|
detector.setInputSize((img1.shape[1], img1.shape[0])) |
|
|
|
faces1 = detector.detect(img1) |
|
## [inference] |
|
|
|
tm.stop() |
|
assert faces1[1] is not None, 'Cannot find a face in {}'.format(args.image1) |
|
|
|
# Draw results on the input image |
|
visualize(img1, faces1, tm.getFPS()) |
|
|
|
# Save results if save is true |
|
if args.save: |
|
print('Results saved to result.jpg\n') |
|
cv.imwrite('result.jpg', img1) |
|
|
|
# Visualize results in a new window |
|
cv.imshow("image1", img1) |
|
|
|
if args.image2 is not None: |
|
img2 = cv.imread(cv.samples.findFile(args.image2)) |
|
|
|
tm.reset() |
|
tm.start() |
|
detector.setInputSize((img2.shape[1], img2.shape[0])) |
|
faces2 = detector.detect(img2) |
|
tm.stop() |
|
assert faces2[1] is not None, 'Cannot find a face in {}'.format(args.image2) |
|
visualize(img2, faces2, tm.getFPS()) |
|
cv.imshow("image2", img2) |
|
|
|
## [initialize_FaceRecognizerSF] |
|
recognizer = cv.FaceRecognizerSF.create( |
|
args.face_recognition_model,"") |
|
## [initialize_FaceRecognizerSF] |
|
|
|
## [facerecognizer] |
|
# Align faces |
|
face1_align = recognizer.alignCrop(img1, faces1[1][0]) |
|
face2_align = recognizer.alignCrop(img2, faces2[1][0]) |
|
|
|
# Extract features |
|
face1_feature = recognizer.feature(face1_align) |
|
face2_feature = recognizer.feature(face2_align) |
|
## [facerecognizer] |
|
|
|
cosine_similarity_threshold = 0.363 |
|
l2_similarity_threshold = 1.128 |
|
|
|
## [match] |
|
cosine_score = recognizer.match(face1_feature, face2_feature, cv.FaceRecognizerSF_FR_COSINE) |
|
l2_score = recognizer.match(face1_feature, face2_feature, cv.FaceRecognizerSF_FR_NORM_L2) |
|
## [match] |
|
|
|
msg = 'different identities' |
|
if cosine_score >= cosine_similarity_threshold: |
|
msg = 'the same identity' |
|
print('They have {}. Cosine Similarity: {}, threshold: {} (higher value means higher similarity, max 1.0).'.format(msg, cosine_score, cosine_similarity_threshold)) |
|
|
|
msg = 'different identities' |
|
if l2_score <= l2_similarity_threshold: |
|
msg = 'the same identity' |
|
print('They have {}. NormL2 Distance: {}, threshold: {} (lower value means higher similarity, min 0.0).'.format(msg, l2_score, l2_similarity_threshold)) |
|
cv.waitKey(0) |
|
else: # Omit input to call default camera |
|
if args.video is not None: |
|
deviceId = args.video |
|
else: |
|
deviceId = 0 |
|
cap = cv.VideoCapture(deviceId) |
|
frameWidth = int(cap.get(cv.CAP_PROP_FRAME_WIDTH)*args.scale) |
|
frameHeight = int(cap.get(cv.CAP_PROP_FRAME_HEIGHT)*args.scale) |
|
detector.setInputSize([frameWidth, frameHeight]) |
|
|
|
while cv.waitKey(1) < 0: |
|
hasFrame, frame = cap.read() |
|
if not hasFrame: |
|
print('No frames grabbed!') |
|
break |
|
|
|
frame = cv.resize(frame, (frameWidth, frameHeight)) |
|
|
|
# Inference |
|
tm.start() |
|
faces = detector.detect(frame) # faces is a tuple |
|
tm.stop() |
|
|
|
# Draw results on the input image |
|
visualize(frame, faces, tm.getFPS()) |
|
|
|
# Visualize results |
|
cv.imshow('Live', frame) |
|
cv.destroyAllWindows()
|
|
|