mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
156 lines
6.1 KiB
156 lines
6.1 KiB
#!/usr/bin/env python |
|
|
|
import sys, os, os.path, glob, math, cv2 |
|
from datetime import datetime |
|
from optparse import OptionParser |
|
import re |
|
import numpy as np |
|
|
|
def resize(image, d_w, d_h): |
|
if (d_h < image.shape[0]) or (d_w < image.shape[1]): |
|
ratio = min(d_h / float(image.shape[0]), d_w / float(image.shape[1])) |
|
|
|
kernel_size = int( 5 / (2 * ratio)) |
|
sigma = 0.5 / ratio |
|
image_to_resize = cv2.filter2D(image, cv2.CV_8UC3, cv2.getGaussianKernel(kernel_size, sigma)) |
|
interpolation_type = cv2.INTER_AREA |
|
else: |
|
image_to_resize = image |
|
interpolation_type = cv2.INTER_CUBIC |
|
|
|
return cv2.resize(image_to_resize,(d_w, d_h), None, 0, 0, interpolation_type) |
|
|
|
def extractPositive(f, path, opath, octave, min_possible): |
|
newobj = re.compile("^lbl=\'(\w+)\'\s+str=(\d+)\s+end=(\d+)\s+hide=0$") |
|
pos = re.compile("^pos\s=(\[[((\d+\.+\d*)|\s+|\;)]*\])$") |
|
occl = re.compile("^occl\s*=(\[[0-1|\s]*\])$") |
|
|
|
whole_mod_w = int(64 * octave) + 2 * int(20 * octave) |
|
whole_mod_h = int(128 * octave) + 2 * int(20 * octave) |
|
|
|
goNext = 0 |
|
start = 0 |
|
end = 0 |
|
|
|
person_id = -1; |
|
|
|
boxes = [] |
|
occls = [] |
|
|
|
for l in f: |
|
m = newobj.match(l) |
|
if m is not None: |
|
if m.group(1) == "person": |
|
goNext = 1 |
|
start = int(m.group(2)) |
|
end = int(m.group(3)) |
|
person_id = person_id + 1 |
|
print m.group(1), person_id, start, end |
|
else: |
|
goNext = 0 |
|
else: |
|
m = pos.match(l) |
|
if m is not None: |
|
if not goNext: |
|
continue |
|
strarr = re.sub(r"\s", ", ", re.sub(r"\;\s+(?=\])", "]", re.sub(r"\;\s+(?!\])", "],[", re.sub(r"(\[)(\d)", "\\1[\\2", m.group(1))))) |
|
boxes = eval(strarr) |
|
else: |
|
m = occl.match(l) |
|
if m is not None: |
|
occls = eval(re.sub(r"\s+(?!\])", ",", m.group(1))) |
|
|
|
if len(boxes) > 0 and len(boxes) == len(occls): |
|
for idx, box in enumerate(boxes): |
|
if occls[idx] == 1: |
|
continue |
|
|
|
x = box[0] |
|
y = box[1] |
|
w = box[2] |
|
h = box[3] |
|
|
|
id = int(start) - 1 + idx |
|
file = os.path.join(path, "I0%04d.jpg" % id) |
|
|
|
if (start + id) >= end or w < 10 or h < min_possible: |
|
continue |
|
|
|
mat = cv2.imread(file) |
|
mat_h, mat_w, _ = mat.shape |
|
|
|
# let default height of person be 96. |
|
scale = h / float(96) |
|
rel_scale = scale / octave |
|
|
|
d_w = whole_mod_w * rel_scale |
|
d_h = whole_mod_h * rel_scale |
|
|
|
tb = (d_h - h) / 2.0 |
|
lr = (d_w - w) / 2.0 |
|
|
|
x = int(round(x - lr)) |
|
y = int(round(y - tb)) |
|
|
|
w = int(round(w + lr * 2.0)) |
|
h = int(round(h + tb * 2.0)) |
|
|
|
inner = [max(5, x), max(5, y), min(mat_w - 5, x + w), min(mat_h - 5, y + h) ] |
|
cropped = mat[inner[1]:inner[3], inner[0]:inner[2], :] |
|
|
|
top = int(max(0, 0 - y)) |
|
bottom = int(max(0, y + h - mat_h)) |
|
left = int(max(0, 0 - x)) |
|
right = int(max(0, x + w - mat_w)) |
|
|
|
if top < -d_h / 4.0 or bottom > d_h / 4.0 or left < -d_w / 4.0 or right > d_w / 4.0: |
|
continue |
|
|
|
cropped = cv2.copyMakeBorder(cropped, top, bottom, left, right, cv2.BORDER_REPLICATE) |
|
resized = resize(cropped, whole_mod_w, whole_mod_h) |
|
flipped = cv2.flip(resized, 1) |
|
|
|
cv2.imshow("resized", resized) |
|
|
|
c = cv2.waitKey(20) |
|
if c == 27: |
|
exit(0) |
|
|
|
fname = re.sub(r"^.*\/(set[0-1]\d)\/(V0\d\d)\.(seq)/(I\d+).jpg$", "\\1_\\2_\\4", file) |
|
fname = os.path.join(opath, fname + "_%04d." % person_id + "png") |
|
fname_fl = os.path.join(opath, fname + "_mirror_%04d." % person_id + "png") |
|
try: |
|
cv2.imwrite(fname, resized) |
|
cv2.imwrite(fname_fl, flipped) |
|
except: |
|
print "something wrong... go next." |
|
pass |
|
|
|
if __name__ == "__main__": |
|
parser = OptionParser() |
|
parser.add_option("-i", "--input", dest="input", metavar="DIRECTORY", type="string", |
|
help="Path to the Caltech dataset folder.") |
|
|
|
parser.add_option("-d", "--output-dir", dest="output", metavar="DIRECTORY", type="string", |
|
help="Path to store data", default=".") |
|
|
|
parser.add_option("-o", "--octave", dest="octave", type="float", |
|
help="Octave for a dataset to be scaled", default="0.5") |
|
|
|
parser.add_option("-m", "--min-possible", dest="min_possible", type="int", |
|
help="Minimum possible height for positive.", default="64") |
|
|
|
(options, args) = parser.parse_args() |
|
|
|
if not options.input: |
|
parser.error("Caltech dataset folder is required.") |
|
|
|
opath = os.path.join(options.output, datetime.now().strftime("raw_ge64_cr_mirr_ts" + "-%Y-%m-%d-%H-%M-%S")) |
|
os.mkdir(opath) |
|
|
|
gl = glob.iglob( os.path.join(options.input, "set[0][0]/V0[0-9][0-9].txt")) |
|
for each in gl: |
|
path, ext = os.path.splitext(each) |
|
path = path + ".seq" |
|
print path |
|
extractPositive(open(each), path, opath, options.octave, options.min_possible) |