Open Source Computer Vision Library
https://opencv.org/
518 lines
23 KiB
518 lines
23 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved. |
|
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved. |
|
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// @Authors |
|
// Jia Haipeng, jiahaipeng95@gmail.com |
|
// Peng Xiao, pengxiao@outlook.com |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other oclMaterials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
#include <vector> |
|
#include <cstdio> |
|
|
|
using namespace cv; |
|
using namespace cv::ocl; |
|
using namespace std; |
|
|
|
//////////////////////////////////////////////////////////////////////// |
|
///////////////// stereoBP ///////////////////////////////////////////// |
|
//////////////////////////////////////////////////////////////////////// |
|
|
|
namespace cv |
|
{ |
|
namespace ocl |
|
{ |
|
|
|
///////////////////////////OpenCL kernel strings/////////////////////////// |
|
extern const char *stereobp; |
|
} |
|
|
|
} |
|
namespace cv |
|
{ |
|
namespace ocl |
|
{ |
|
namespace stereoBP |
|
{ |
|
////////////////////////////////////////////////////////////////////////// |
|
//////////////////////////////common//////////////////////////////////// |
|
//////////////////////////////////////////////////////////////////////// |
|
typedef struct |
|
{ |
|
int cndisp; |
|
float cmax_data_term; |
|
float cdata_weight; |
|
float cmax_disc_term; |
|
float cdisc_single_jump; |
|
} con_struct_t; |
|
|
|
cl_mem cl_con_struct = NULL; |
|
static void load_constants(int ndisp, float max_data_term, float data_weight, |
|
float max_disc_term, float disc_single_jump) |
|
{ |
|
con_struct_t *con_struct = new con_struct_t; |
|
con_struct -> cndisp = ndisp; |
|
con_struct -> cmax_data_term = max_data_term; |
|
con_struct -> cdata_weight = data_weight; |
|
con_struct -> cmax_disc_term = max_disc_term; |
|
con_struct -> cdisc_single_jump = disc_single_jump; |
|
|
|
Context* clCtx = Context::getContext(); |
|
cl_context clContext = *(cl_context*)(clCtx->getOpenCLContextPtr()); |
|
cl_command_queue clCmdQueue = *(cl_command_queue*)(clCtx->getOpenCLCommandQueuePtr()); |
|
cl_con_struct = load_constant(clContext, clCmdQueue, (void *)con_struct, |
|
sizeof(con_struct_t)); |
|
|
|
delete con_struct; |
|
} |
|
static void release_constants() |
|
{ |
|
openCLFree(cl_con_struct); |
|
} |
|
|
|
///////////////////////////////////////////////////////////////////////////// |
|
///////////////////////////comp data//////////////////////////////////////// |
|
///////////////////////////////////////////////////////////////////////// |
|
static void comp_data_call(const oclMat &left, const oclMat &right, oclMat &data, int /*disp*/, |
|
float /*cmax_data_term*/, float /*cdata_weight*/) |
|
{ |
|
Context *clCxt = left.clCxt; |
|
int channels = left.oclchannels(); |
|
int data_type = data.type(); |
|
|
|
string kernelName = "comp_data"; |
|
|
|
vector<pair<size_t , const void *> > args; |
|
|
|
args.push_back( make_pair( sizeof(cl_mem) , (void *)&left.data)); |
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&left.rows)); |
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&left.cols)); |
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&left.step)); |
|
args.push_back( make_pair( sizeof(cl_mem) , (void *)&right.data)); |
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&right.step)); |
|
args.push_back( make_pair( sizeof(cl_mem) , (void *)&data.data)); |
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&data.step)); |
|
args.push_back( make_pair( sizeof(cl_mem) , (void *)&cl_con_struct)); |
|
|
|
size_t gt[3] = {left.cols, left.rows, 1}, lt[3] = {16, 16, 1}; |
|
|
|
const int OPT_SIZE = 50; |
|
char cn_opt [OPT_SIZE] = ""; |
|
sprintf( cn_opt, "%s -D CN=%d", |
|
(data_type == CV_16S ? "-D T_SHORT":"-D T_FLOAT"), |
|
channels |
|
); |
|
openCLExecuteKernel(clCxt, &stereobp, kernelName, gt, lt, args, -1, -1, cn_opt); |
|
} |
|
/////////////////////////////////////////////////////////////////////////////////// |
|
/////////////////////////data set down//////////////////////////////////////////// |
|
///////////////////////////////////////////////////////////////////////////////// |
|
static void data_step_down_call(int dst_cols, int dst_rows, int src_rows, |
|
const oclMat &src, oclMat &dst, int disp) |
|
{ |
|
Context *clCxt = src.clCxt; |
|
int data_type = src.type(); |
|
|
|
string kernelName = "data_step_down"; |
|
|
|
vector<pair<size_t , const void *> > args; |
|
|
|
args.push_back( make_pair( sizeof(cl_mem) , (void *)&src.data)); |
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&src_rows)); |
|
args.push_back( make_pair( sizeof(cl_mem) , (void *)&dst.data)); |
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&dst_rows)); |
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&dst_cols)); |
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&src.step)); |
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&dst.step)); |
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&disp)); |
|
|
|
size_t gt[3] = {dst_cols, dst_rows, 1}, lt[3] = {16, 16, 1}; |
|
const char* t_opt = data_type == CV_16S ? "-D T_SHORT":"-D T_FLOAT"; |
|
openCLExecuteKernel(clCxt, &stereobp, kernelName, gt, lt, args, -1, -1, t_opt); |
|
} |
|
///////////////////////////////////////////////////////////////////////////////// |
|
///////////////////////////live up message//////////////////////////////////////// |
|
///////////////////////////////////////////////////////////////////////////////// |
|
static void level_up_message_call(int dst_cols, int dst_rows, int src_rows, |
|
oclMat &src, oclMat &dst, int ndisp) |
|
{ |
|
Context *clCxt = src.clCxt; |
|
int data_type = src.type(); |
|
|
|
string kernelName = "level_up_message"; |
|
vector<pair<size_t , const void *> > args; |
|
|
|
args.push_back( make_pair( sizeof(cl_mem) , (void *)&src.data)); |
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&src_rows)); |
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&src.step)); |
|
args.push_back( make_pair( sizeof(cl_mem) , (void *)&dst.data)); |
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&dst_rows)); |
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&dst_cols)); |
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&dst.step)); |
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&ndisp)); |
|
|
|
size_t gt[3] = {dst_cols, dst_rows, 1}, lt[3] = {16, 16, 1}; |
|
const char* t_opt = data_type == CV_16S ? "-D T_SHORT":"-D T_FLOAT"; |
|
openCLExecuteKernel(clCxt, &stereobp, kernelName, gt, lt, args, -1, -1, t_opt); |
|
} |
|
static void level_up_messages_calls(int dst_idx, int dst_cols, int dst_rows, int src_rows, |
|
oclMat *mus, oclMat *mds, oclMat *mls, oclMat *mrs, |
|
int ndisp) |
|
{ |
|
int src_idx = (dst_idx + 1) & 1; |
|
|
|
level_up_message_call(dst_cols, dst_rows, src_rows, |
|
mus[src_idx], mus[dst_idx], ndisp); |
|
|
|
level_up_message_call(dst_cols, dst_rows, src_rows, |
|
mds[src_idx], mds[dst_idx], ndisp); |
|
|
|
level_up_message_call(dst_cols, dst_rows, src_rows, |
|
mls[src_idx], mls[dst_idx], ndisp); |
|
|
|
level_up_message_call(dst_cols, dst_rows, src_rows, |
|
mrs[src_idx], mrs[dst_idx], ndisp); |
|
} |
|
////////////////////////////////////////////////////////////////////////////////// |
|
//////////////////////////////cals_all_iterations_call/////////////////////////// |
|
///////////////////////////////////////////////////////////////////////////////// |
|
static void calc_all_iterations_call(int cols, int rows, oclMat &u, oclMat &d, |
|
oclMat &l, oclMat &r, oclMat &data, |
|
int t, int cndisp, float cmax_disc_term, |
|
float cdisc_single_jump) |
|
{ |
|
Context *clCxt = l.clCxt; |
|
int data_type = u.type(); |
|
|
|
string kernelName = "one_iteration"; |
|
|
|
vector<pair<size_t , const void *> > args; |
|
|
|
args.push_back( make_pair( sizeof(cl_mem) , (void *)&u.data)); |
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&u.step)); |
|
args.push_back( make_pair( sizeof(cl_mem) , (void *)&data.data)); |
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&data.step)); |
|
args.push_back( make_pair( sizeof(cl_mem) , (void *)&d.data)); |
|
args.push_back( make_pair( sizeof(cl_mem) , (void *)&l.data)); |
|
args.push_back( make_pair( sizeof(cl_mem) , (void *)&r.data)); |
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&t)); |
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&cols)); |
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&rows)); |
|
args.push_back( make_pair( sizeof(cl_float) , (void *)&cmax_disc_term)); |
|
args.push_back( make_pair( sizeof(cl_float) , (void *)&cdisc_single_jump)); |
|
|
|
size_t gt[3] = {cols, rows, 1}, lt[3] = {16, 16, 1}; |
|
char opt[80] = ""; |
|
sprintf(opt, "-D %s -D CNDISP=%d", data_type == CV_16S ? "T_SHORT":"T_FLOAT", cndisp); |
|
openCLExecuteKernel(clCxt, &stereobp, kernelName, gt, lt, args, -1, -1, opt); |
|
} |
|
|
|
static void calc_all_iterations_calls(int cols, int rows, int iters, oclMat &u, |
|
oclMat &d, oclMat &l, oclMat &r, |
|
oclMat &data, int cndisp, float cmax_disc_term, |
|
float cdisc_single_jump) |
|
{ |
|
for(int t = 0; t < iters; ++t) |
|
calc_all_iterations_call(cols, rows, u, d, l, r, data, t, cndisp, |
|
cmax_disc_term, cdisc_single_jump); |
|
} |
|
/////////////////////////////////////////////////////////////////////////////// |
|
///////////////////////output/////////////////////////////////////////////////// |
|
//////////////////////////////////////////////////////////////////////////////// |
|
static void output_call(const oclMat &u, const oclMat &d, const oclMat l, const oclMat &r, |
|
const oclMat &data, oclMat &disp, int ndisp) |
|
{ |
|
Context *clCxt = u.clCxt; |
|
int data_type = u.type(); |
|
|
|
string kernelName = "output"; |
|
|
|
vector<pair<size_t , const void *> > args; |
|
|
|
args.push_back( make_pair( sizeof(cl_mem) , (void *)&u.data)); |
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&u.step)); |
|
args.push_back( make_pair( sizeof(cl_mem) , (void *)&d.data)); |
|
args.push_back( make_pair( sizeof(cl_mem) , (void *)&l.data)); |
|
args.push_back( make_pair( sizeof(cl_mem) , (void *)&r.data)); |
|
args.push_back( make_pair( sizeof(cl_mem) , (void *)&data.data)); |
|
args.push_back( make_pair( sizeof(cl_mem) , (void *)&disp.data)); |
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&disp.rows)); |
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&disp.cols)); |
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&disp.step)); |
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&ndisp)); |
|
|
|
size_t gt[3] = {disp.cols, disp.rows, 1}, lt[3] = {16, 16, 1}; |
|
const char* t_opt = data_type == CV_16S ? "-D T_SHORT":"-D T_FLOAT"; |
|
openCLExecuteKernel(clCxt, &stereobp, kernelName, gt, lt, args, -1, -1, t_opt); |
|
} |
|
} |
|
} |
|
} |
|
namespace |
|
{ |
|
const float DEFAULT_MAX_DATA_TERM = 10.0f; |
|
const float DEFAULT_DATA_WEIGHT = 0.07f; |
|
const float DEFAULT_MAX_DISC_TERM = 1.7f; |
|
const float DEFAULT_DISC_SINGLE_JUMP = 1.0f; |
|
} |
|
|
|
void cv::ocl::StereoBeliefPropagation::estimateRecommendedParams(int width, int height, int &ndisp, int &iters, int &levels) |
|
{ |
|
ndisp = width / 4; |
|
if ((ndisp & 1) != 0) |
|
ndisp++; |
|
|
|
int mm = ::max(width, height); |
|
iters = mm / 100 + 2; |
|
|
|
levels = (int)(::log(static_cast<double>(mm)) + 1) * 4 / 5; |
|
if (levels == 0) levels++; |
|
} |
|
|
|
cv::ocl::StereoBeliefPropagation::StereoBeliefPropagation(int ndisp_, int iters_, int levels_, int msg_type_) |
|
: ndisp(ndisp_), iters(iters_), levels(levels_), |
|
max_data_term(DEFAULT_MAX_DATA_TERM), data_weight(DEFAULT_DATA_WEIGHT), |
|
max_disc_term(DEFAULT_MAX_DISC_TERM), disc_single_jump(DEFAULT_DISC_SINGLE_JUMP), |
|
msg_type(msg_type_), datas(levels_) |
|
{ |
|
} |
|
|
|
cv::ocl::StereoBeliefPropagation::StereoBeliefPropagation(int ndisp_, int iters_, int levels_, float max_data_term_, float data_weight_, float max_disc_term_, float disc_single_jump_, int msg_type_) |
|
: ndisp(ndisp_), iters(iters_), levels(levels_), |
|
max_data_term(max_data_term_), data_weight(data_weight_), |
|
max_disc_term(max_disc_term_), disc_single_jump(disc_single_jump_), |
|
msg_type(msg_type_), datas(levels_) |
|
{ |
|
} |
|
|
|
namespace |
|
{ |
|
class StereoBeliefPropagationImpl |
|
{ |
|
public: |
|
StereoBeliefPropagationImpl(StereoBeliefPropagation &rthis_, |
|
oclMat &u_, oclMat &d_, oclMat &l_, oclMat &r_, |
|
oclMat &u2_, oclMat &d2_, oclMat &l2_, oclMat &r2_, |
|
vector<oclMat> &datas_, oclMat &out_) |
|
: rthis(rthis_), u(u_), d(d_), l(l_), r(r_), u2(u2_), d2(d2_), l2(l2_), r2(r2_), datas(datas_), out(out_), |
|
zero(Scalar::all(0)), scale(rthis_.msg_type == CV_32F ? 1.0f : 10.0f) |
|
{ |
|
CV_Assert(0 < rthis.ndisp && 0 < rthis.iters && 0 < rthis.levels); |
|
CV_Assert(rthis.msg_type == CV_32F || rthis.msg_type == CV_16S); |
|
CV_Assert(rthis.msg_type == CV_32F || (1 << (rthis.levels - 1)) * scale * rthis.max_data_term < numeric_limits<short>::max()); |
|
} |
|
|
|
void operator()(const oclMat &left, const oclMat &right, oclMat &disp) |
|
{ |
|
CV_Assert(left.size() == right.size() && left.type() == right.type()); |
|
CV_Assert(left.type() == CV_8UC1 || left.type() == CV_8UC3 || left.type() == CV_8UC4); |
|
|
|
rows = left.rows; |
|
cols = left.cols; |
|
|
|
int divisor = (int)pow(2.f, rthis.levels - 1.0f); |
|
int lowest_cols = cols / divisor; |
|
int lowest_rows = rows / divisor; |
|
const int min_image_dim_size = 2; |
|
CV_Assert(min(lowest_cols, lowest_rows) > min_image_dim_size); |
|
|
|
init(); |
|
|
|
datas[0].create(rows * rthis.ndisp, cols, rthis.msg_type); |
|
datas[0].setTo(Scalar_<short>::all(0)); |
|
|
|
cv::ocl::stereoBP::comp_data_call(left, right, datas[0], rthis.ndisp, rthis.max_data_term, scale * rthis.data_weight); |
|
calcBP(disp); |
|
} |
|
|
|
void operator()(const oclMat &data, oclMat &disp) |
|
{ |
|
CV_Assert((data.type() == rthis.msg_type) && (data.rows % rthis.ndisp == 0)); |
|
|
|
rows = data.rows / rthis.ndisp; |
|
cols = data.cols; |
|
|
|
int divisor = (int)pow(2.f, rthis.levels - 1.0f); |
|
int lowest_cols = cols / divisor; |
|
int lowest_rows = rows / divisor; |
|
const int min_image_dim_size = 2; |
|
CV_Assert(min(lowest_cols, lowest_rows) > min_image_dim_size); |
|
|
|
init(); |
|
|
|
datas[0] = data; |
|
|
|
calcBP(disp); |
|
} |
|
private: |
|
void init() |
|
{ |
|
u.create(rows * rthis.ndisp, cols, rthis.msg_type); |
|
d.create(rows * rthis.ndisp, cols, rthis.msg_type); |
|
l.create(rows * rthis.ndisp, cols, rthis.msg_type); |
|
r.create(rows * rthis.ndisp, cols, rthis.msg_type); |
|
|
|
if (rthis.levels & 1) |
|
{ |
|
//can clear less area |
|
u = zero; |
|
d = zero; |
|
l = zero; |
|
r = zero; |
|
} |
|
|
|
if (rthis.levels > 1) |
|
{ |
|
int less_rows = (rows + 1) / 2; |
|
int less_cols = (cols + 1) / 2; |
|
|
|
u2.create(less_rows * rthis.ndisp, less_cols, rthis.msg_type); |
|
d2.create(less_rows * rthis.ndisp, less_cols, rthis.msg_type); |
|
l2.create(less_rows * rthis.ndisp, less_cols, rthis.msg_type); |
|
r2.create(less_rows * rthis.ndisp, less_cols, rthis.msg_type); |
|
|
|
if ((rthis.levels & 1) == 0) |
|
{ |
|
u2 = zero; |
|
d2 = zero; |
|
l2 = zero; |
|
r2 = zero; |
|
} |
|
} |
|
|
|
cv::ocl::stereoBP::load_constants(rthis.ndisp, rthis.max_data_term, scale * rthis.data_weight, |
|
scale * rthis.max_disc_term, scale * rthis.disc_single_jump); |
|
|
|
datas.resize(rthis.levels); |
|
cols_all.resize(rthis.levels); |
|
rows_all.resize(rthis.levels); |
|
|
|
cols_all[0] = cols; |
|
rows_all[0] = rows; |
|
} |
|
|
|
void calcBP(oclMat &disp) |
|
{ |
|
using namespace cv::ocl::stereoBP; |
|
|
|
for (int i = 1; i < rthis.levels; ++i) |
|
{ |
|
cols_all[i] = (cols_all[i - 1] + 1) / 2; |
|
rows_all[i] = (rows_all[i - 1] + 1) / 2; |
|
|
|
datas[i].create(rows_all[i] * rthis.ndisp, cols_all[i], rthis.msg_type); |
|
datas[i].setTo(Scalar_<short>::all(0)); |
|
|
|
data_step_down_call(cols_all[i], rows_all[i], rows_all[i - 1], |
|
datas[i - 1], datas[i], rthis.ndisp); |
|
} |
|
|
|
oclMat mus[] = {u, u2}; |
|
oclMat mds[] = {d, d2}; |
|
oclMat mrs[] = {r, r2}; |
|
oclMat mls[] = {l, l2}; |
|
|
|
int mem_idx = (rthis.levels & 1) ? 0 : 1; |
|
|
|
for (int i = rthis.levels - 1; i >= 0; --i) |
|
{ |
|
// for lower level we have already computed messages by setting to zero |
|
if (i != rthis.levels - 1) |
|
level_up_messages_calls(mem_idx, cols_all[i], rows_all[i], rows_all[i + 1], |
|
mus, mds, mls, mrs, rthis.ndisp); |
|
|
|
calc_all_iterations_calls(cols_all[i], rows_all[i], rthis.iters, mus[mem_idx], |
|
mds[mem_idx], mls[mem_idx], mrs[mem_idx], datas[i], |
|
rthis.ndisp, scale * rthis.max_disc_term, |
|
scale * rthis.disc_single_jump); |
|
|
|
mem_idx = (mem_idx + 1) & 1; |
|
} |
|
if (disp.empty()) |
|
disp.create(rows, cols, CV_16S); |
|
|
|
out = ((disp.type() == CV_16S) ? disp : (out.create(rows, cols, CV_16S), out)); |
|
out = zero; |
|
|
|
output_call(u, d, l, r, datas.front(), out, rthis.ndisp); |
|
|
|
if (disp.type() != CV_16S) |
|
out.convertTo(disp, disp.type()); |
|
|
|
release_constants(); |
|
} |
|
StereoBeliefPropagationImpl& operator=(const StereoBeliefPropagationImpl&); |
|
|
|
StereoBeliefPropagation &rthis; |
|
|
|
oclMat &u; |
|
oclMat &d; |
|
oclMat &l; |
|
oclMat &r; |
|
|
|
oclMat &u2; |
|
oclMat &d2; |
|
oclMat &l2; |
|
oclMat &r2; |
|
|
|
vector<oclMat> &datas; |
|
oclMat &out; |
|
|
|
const Scalar zero; |
|
const float scale; |
|
|
|
int rows, cols; |
|
|
|
vector<int> cols_all, rows_all; |
|
}; |
|
} |
|
|
|
void cv::ocl::StereoBeliefPropagation::operator()(const oclMat &left, const oclMat &right, oclMat &disp) |
|
{ |
|
::StereoBeliefPropagationImpl impl(*this, u, d, l, r, u2, d2, l2, r2, datas, out); |
|
impl(left, right, disp); |
|
} |
|
|
|
void cv::ocl::StereoBeliefPropagation::operator()(const oclMat &data, oclMat &disp) |
|
{ |
|
::StereoBeliefPropagationImpl impl(*this, u, d, l, r, u2, d2, l2, r2, datas, out); |
|
impl(data, disp); |
|
}
|
|
|