Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
589 lines
16 KiB
589 lines
16 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
#include "opencv2/photo.hpp" |
|
#include <iostream> |
|
#include <stdlib.h> |
|
#include <complex> |
|
#include "math.h" |
|
|
|
using namespace std; |
|
using namespace cv; |
|
|
|
class Cloning |
|
{ |
|
public: |
|
void normal_clone(const Mat &I, const Mat &mask, const Mat &wmask, Mat &cloned, int num); |
|
void illum_change(Mat &I, Mat &mask, Mat &wmask, Mat &cloned, float alpha, float beta); |
|
void local_color_change(Mat &I, Mat &mask, Mat &wmask, Mat &cloned, float red_mul, float green_mul, float blue_mul); |
|
void texture_flatten(Mat &I, Mat &mask, Mat &wmask, double low_threshold, double high_threhold, int kernel_size, Mat &cloned); |
|
|
|
protected: |
|
|
|
vector <Mat> rgb_channel, rgbx_channel, rgby_channel, output; |
|
Mat grx, gry, sgx, sgy, srx32, sry32, grx32, gry32, smask, smask1; |
|
void init_var(const Mat &I, const Mat &wmask); |
|
void initialization(const Mat &I, const Mat &mask, const Mat &wmask); |
|
void scalar_product(Mat mat, float r, float g, float b); |
|
void array_product(Mat mat1, Mat mat2, Mat mat3); |
|
void poisson(const Mat &I, const Mat &gx, const Mat &gy, const Mat &sx, const Mat &sy); |
|
void evaluate(const Mat &I, const Mat &wmask, const Mat &cloned); |
|
void getGradientx(const Mat &img, Mat &gx); |
|
void getGradienty(const Mat &img, Mat &gy); |
|
void lapx(const Mat &img, Mat &gxx); |
|
void lapy(const Mat &img, Mat &gyy); |
|
void dst(double *mod_diff, double *sineTransform,int h,int w); |
|
void idst(double *mod_diff, double *sineTransform,int h,int w); |
|
void transpose(double *mat, double *mat_t,int h,int w); |
|
void solve(const Mat &img, double *mod_diff, Mat &result); |
|
void poisson_solver(const Mat &img, Mat &gxx , Mat &gyy, Mat &result); |
|
|
|
|
|
|
|
|
|
}; |
|
|
|
void Cloning::getGradientx( const Mat &img, Mat &gx) |
|
{ |
|
Mat kernel = Mat::zeros(1, 3, CV_8S); |
|
kernel.at<char>(0,2) = 1; |
|
kernel.at<char>(0,1) = -1; |
|
filter2D(img, gx, CV_32F, kernel); |
|
} |
|
|
|
void Cloning::getGradienty( const Mat &img, Mat &gy) |
|
{ |
|
Mat kernel = Mat::zeros(3, 1, CV_8S); |
|
kernel.at<char>(2,0) = 1; |
|
kernel.at<char>(1,0) = -1; |
|
filter2D(img, gy, CV_32F, kernel); |
|
} |
|
|
|
void Cloning::lapx( const Mat &img, Mat &gxx) |
|
{ |
|
Mat kernel = Mat::zeros(1, 3, CV_8S); |
|
kernel.at<char>(0,0) = -1; |
|
kernel.at<char>(0,1) = 1; |
|
filter2D(img, gxx, CV_32F, kernel); |
|
} |
|
|
|
void Cloning::lapy( const Mat &img, Mat &gyy) |
|
{ |
|
Mat kernel = Mat::zeros(3, 1, CV_8S); |
|
kernel.at<char>(0,0) = -1; |
|
kernel.at<char>(1,0) = 1; |
|
filter2D(img, gyy, CV_32F, kernel); |
|
} |
|
|
|
void Cloning::dst(double *mod_diff, double *sineTransform,int h,int w) |
|
{ |
|
|
|
unsigned long int idx; |
|
|
|
Mat temp = Mat(2*h+2,1,CV_32F); |
|
Mat res = Mat(h,1,CV_32F); |
|
|
|
Mat planes[] = {Mat_<float>(temp), Mat::zeros(temp.size(), CV_32F)}; |
|
|
|
Mat result; |
|
int p=0; |
|
for(int i=0;i<w;i++) |
|
{ |
|
temp.at<float>(0,0) = 0.0; |
|
|
|
for(int j=0,r=1;j<h;j++,r++) |
|
{ |
|
idx = j*w+i; |
|
temp.at<float>(r,0) = (float) mod_diff[idx]; |
|
} |
|
|
|
temp.at<float>(h+1,0)=0.0; |
|
|
|
for(int j=h-1, r=h+2;j>=0;j--,r++) |
|
{ |
|
idx = j*w+i; |
|
temp.at<float>(r,0) = (float) (-1.0 * mod_diff[idx]); |
|
} |
|
|
|
merge(planes, 2, result); |
|
|
|
dft(result,result,0,0); |
|
|
|
Mat planes1[] = {Mat::zeros(result.size(), CV_32F), Mat::zeros(result.size(), CV_32F)}; |
|
|
|
split(result, planes1); |
|
|
|
std::complex<double> two_i = std::sqrt(std::complex<double>(-1)); |
|
|
|
double factor = -2*imag(two_i); |
|
|
|
for(int c=1,z=0;c<h+1;c++,z++) |
|
{ |
|
res.at<float>(z,0) = (float) (planes1[1].at<float>(c,0)/factor); |
|
} |
|
|
|
for(int q=0,z=0;q<h;q++,z++) |
|
{ |
|
idx = q*w+p; |
|
sineTransform[idx] = res.at<float>(z,0); |
|
} |
|
p++; |
|
} |
|
} |
|
|
|
void Cloning::idst(double *mod_diff, double *sineTransform,int h,int w) |
|
{ |
|
int nn = h+1; |
|
unsigned long int idx; |
|
dst(mod_diff,sineTransform,h,w); |
|
for(int i= 0;i<h;i++) |
|
for(int j=0;j<w;j++) |
|
{ |
|
idx = i*w + j; |
|
sineTransform[idx] = (double) (2*sineTransform[idx])/nn; |
|
} |
|
|
|
} |
|
|
|
void Cloning::transpose(double *mat, double *mat_t,int h,int w) |
|
{ |
|
|
|
Mat tmp = Mat(h,w,CV_32FC1); |
|
unsigned long int idx; |
|
for(int i = 0 ; i < h;i++) |
|
{ |
|
for(int j = 0 ; j < w; j++) |
|
{ |
|
|
|
idx = i*(w) + j; |
|
tmp.at<float>(i,j) = (float) mat[idx]; |
|
} |
|
} |
|
Mat tmp_t = tmp.t(); |
|
|
|
for(int i = 0;i < tmp_t.size().height; i++) |
|
for(int j=0;j<tmp_t.size().width;j++) |
|
{ |
|
idx = i*tmp_t.size().width + j; |
|
mat_t[idx] = tmp_t.at<float>(i,j); |
|
} |
|
} |
|
|
|
void Cloning::solve(const Mat &img, double *mod_diff, Mat &result) |
|
{ |
|
int w = img.size().width; |
|
int h = img.size().height; |
|
|
|
unsigned long int idx,idx1; |
|
|
|
double *sineTransform = new double[(h-2)*(w-2)]; |
|
double *sineTransform_t = new double[(h-2)*(w-2)]; |
|
double *denom = new double[(h-2)*(w-2)]; |
|
double *invsineTransform = new double[(h-2)*(w-2)]; |
|
double *invsineTransform_t = new double[(h-2)*(w-2)]; |
|
double *img_d = new double[(h)*(w)]; |
|
|
|
dst(mod_diff,sineTransform,h-2,w-2); |
|
|
|
transpose(sineTransform,sineTransform_t,h-2,w-2); |
|
|
|
dst(sineTransform_t,sineTransform,w-2,h-2); |
|
|
|
transpose(sineTransform,sineTransform_t,w-2,h-2); |
|
|
|
int cy = 1; |
|
|
|
for(int i = 0 ; i < w-2;i++,cy++) |
|
{ |
|
for(int j = 0,cx = 1; j < h-2; j++,cx++) |
|
{ |
|
idx = j*(w-2) + i; |
|
denom[idx] = (float) 2*cos(CV_PI*cy/( (double) (w-1))) - 2 + 2*cos(CV_PI*cx/((double) (h-1))) - 2; |
|
|
|
} |
|
} |
|
|
|
for(idx = 0 ; idx < (unsigned)(w-2)*(h-2) ;idx++) |
|
{ |
|
sineTransform_t[idx] = sineTransform_t[idx]/denom[idx]; |
|
} |
|
|
|
idst(sineTransform_t,invsineTransform,h-2,w-2); |
|
|
|
transpose(invsineTransform,invsineTransform_t,h-2,w-2); |
|
|
|
idst(invsineTransform_t,invsineTransform,w-2,h-2); |
|
|
|
transpose(invsineTransform,invsineTransform_t,w-2,h-2); |
|
|
|
for(int i = 0 ; i < h;i++) |
|
{ |
|
for(int j = 0 ; j < w; j++) |
|
{ |
|
idx = i*w + j; |
|
img_d[idx] = (double)img.at<uchar>(i,j); |
|
} |
|
} |
|
for(int i = 1 ; i < h-1;i++) |
|
{ |
|
for(int j = 1 ; j < w-1; j++) |
|
{ |
|
idx = i*w + j; |
|
img_d[idx] = 0.0; |
|
} |
|
} |
|
for(int i = 1,id1=0 ; i < h-1;i++,id1++) |
|
{ |
|
for(int j = 1,id2=0 ; j < w-1; j++,id2++) |
|
{ |
|
idx = i*w + j; |
|
idx1= id1*(w-2) + id2; |
|
img_d[idx] = invsineTransform_t[idx1]; |
|
} |
|
} |
|
|
|
for(int i = 0 ; i < h;i++) |
|
{ |
|
for(int j = 0 ; j < w; j++) |
|
{ |
|
idx = i*w + j; |
|
if(img_d[idx] < 0.0) |
|
result.at<uchar>(i,j) = 0; |
|
else if(img_d[idx] > 255.0) |
|
result.at<uchar>(i,j) = 255; |
|
else |
|
result.at<uchar>(i,j) = (uchar) img_d[idx]; |
|
} |
|
} |
|
|
|
delete [] sineTransform; |
|
delete [] sineTransform_t; |
|
delete [] denom; |
|
delete [] invsineTransform; |
|
delete [] invsineTransform_t; |
|
delete [] img_d; |
|
} |
|
|
|
void Cloning::poisson_solver(const Mat &img, Mat &gxx , Mat &gyy, Mat &result) |
|
{ |
|
|
|
int w = img.size().width; |
|
int h = img.size().height; |
|
|
|
unsigned long int idx; |
|
|
|
Mat lap = Mat(img.size(),CV_32FC1); |
|
|
|
lap = gxx + gyy; |
|
|
|
Mat bound = img.clone(); |
|
|
|
rectangle(bound, Point(1, 1), Point(img.cols-2, img.rows-2), Scalar::all(0), -1); |
|
|
|
double *boundary_point = new double[h*w]; |
|
|
|
for(int i =1;i<h-1;i++) |
|
for(int j=1;j<w-1;j++) |
|
{ |
|
idx=i*w + j; |
|
boundary_point[idx] = -4*(int)bound.at<uchar>(i,j) + (int)bound.at<uchar>(i,(j+1)) + (int)bound.at<uchar>(i,(j-1)) |
|
+ (int)bound.at<uchar>(i-1,j) + (int)bound.at<uchar>(i+1,j); |
|
} |
|
|
|
Mat diff = Mat(h,w,CV_32FC1); |
|
for(int i =0;i<h;i++) |
|
{ |
|
for(int j=0;j<w;j++) |
|
{ |
|
idx = i*w+j; |
|
diff.at<float>(i,j) = (float) (lap.at<float>(i,j) - boundary_point[idx]); |
|
} |
|
} |
|
|
|
double *mod_diff = new double[(h-2)*(w-2)]; |
|
for(int i = 0 ; i < h-2;i++) |
|
{ |
|
for(int j = 0 ; j < w-2; j++) |
|
{ |
|
idx = i*(w-2) + j; |
|
mod_diff[idx] = diff.at<float>(i+1,j+1); |
|
|
|
} |
|
} |
|
///////////////////////////////////////////////////// Find DST ///////////////////////////////////////////////////// |
|
|
|
solve(img,mod_diff,result); |
|
|
|
delete [] mod_diff; |
|
delete [] boundary_point; |
|
} |
|
|
|
void Cloning::init_var(const Mat &I, const Mat &wmask) |
|
{ |
|
grx = Mat(I.size(),CV_32FC3); |
|
gry = Mat(I.size(),CV_32FC3); |
|
sgx = Mat(I.size(),CV_32FC3); |
|
sgy = Mat(I.size(),CV_32FC3); |
|
|
|
split(I,rgb_channel); |
|
|
|
smask = Mat(wmask.size(),CV_32FC1); |
|
srx32 = Mat(I.size(),CV_32FC3); |
|
sry32 = Mat(I.size(),CV_32FC3); |
|
smask1 = Mat(wmask.size(),CV_32FC1); |
|
grx32 = Mat(I.size(),CV_32FC3); |
|
gry32 = Mat(I.size(),CV_32FC3); |
|
} |
|
|
|
void Cloning::initialization(const Mat &I, const Mat &mask, const Mat &wmask) |
|
{ |
|
init_var(I,wmask); |
|
|
|
getGradientx(I,grx); |
|
getGradienty(I,gry); |
|
|
|
getGradientx(mask,sgx); |
|
getGradienty(mask,sgy); |
|
|
|
Mat Kernel(Size(3, 3), CV_8UC1); |
|
Kernel.setTo(Scalar(1)); |
|
|
|
erode(wmask, wmask, Kernel, Point(-1,-1), 3); |
|
|
|
wmask.convertTo(smask,CV_32FC1,1.0/255.0); |
|
I.convertTo(srx32,CV_32FC3,1.0/255.0); |
|
I.convertTo(sry32,CV_32FC3,1.0/255.0); |
|
} |
|
|
|
void Cloning::scalar_product(Mat mat, float r, float g, float b) |
|
{ |
|
vector <Mat> channels; |
|
split(mat,channels); |
|
multiply(channels[2],r,channels[2]); |
|
multiply(channels[1],g,channels[1]); |
|
multiply(channels[0],b,channels[0]); |
|
merge(channels,mat); |
|
} |
|
|
|
void Cloning::array_product(Mat mat1, Mat mat2, Mat mat3) |
|
{ |
|
vector <Mat> channels_temp1; |
|
vector <Mat> channels_temp2; |
|
split(mat1,channels_temp1); |
|
split(mat2,channels_temp2); |
|
multiply(channels_temp2[2],mat3,channels_temp1[2]); |
|
multiply(channels_temp2[1],mat3,channels_temp1[1]); |
|
multiply(channels_temp2[0],mat3,channels_temp1[0]); |
|
merge(channels_temp1,mat1); |
|
} |
|
|
|
void Cloning::poisson(const Mat &I, const Mat &gx, const Mat &gy, const Mat &sx, const Mat &sy) |
|
{ |
|
Mat fx = Mat(I.size(),CV_32FC3); |
|
Mat fy = Mat(I.size(),CV_32FC3); |
|
|
|
fx = gx + sx; |
|
fy = gy + sy; |
|
|
|
Mat gxx = Mat(I.size(),CV_32FC3); |
|
Mat gyy = Mat(I.size(),CV_32FC3); |
|
|
|
lapx(fx,gxx); |
|
lapy(fy,gyy); |
|
|
|
split(gxx,rgbx_channel); |
|
split(gyy,rgby_channel); |
|
|
|
split(I,output); |
|
|
|
poisson_solver(rgb_channel[2],rgbx_channel[2], rgby_channel[2],output[2]); |
|
poisson_solver(rgb_channel[1],rgbx_channel[1], rgby_channel[1],output[1]); |
|
poisson_solver(rgb_channel[0],rgbx_channel[0], rgby_channel[0],output[0]); |
|
} |
|
|
|
void Cloning::evaluate(const Mat &I, const Mat &wmask, const Mat &cloned) |
|
{ |
|
bitwise_not(wmask,wmask); |
|
|
|
wmask.convertTo(smask1,CV_32FC1,1.0/255.0); |
|
I.convertTo(grx32,CV_32FC3,1.0/255.0); |
|
I.convertTo(gry32,CV_32FC3,1.0/255.0); |
|
|
|
array_product(grx32,grx,smask1); |
|
array_product(gry32,gry,smask1); |
|
|
|
poisson(I,grx32,gry32,srx32,sry32); |
|
|
|
merge(output,cloned); |
|
} |
|
|
|
void Cloning::normal_clone(const Mat &I, const Mat &mask, const Mat &wmask, Mat &cloned, int num) |
|
{ |
|
int w = I.size().width; |
|
int h = I.size().height; |
|
int channel = I.channels(); |
|
|
|
|
|
initialization(I,mask,wmask); |
|
|
|
if(num == 1) |
|
{ |
|
array_product(srx32,sgx,smask); |
|
array_product(sry32,sgy,smask); |
|
|
|
} |
|
else if(num == 2) |
|
{ |
|
|
|
for(int i=0;i < h; i++) |
|
{ |
|
for(int j=0; j < w; j++) |
|
{ |
|
for(int c=0;c<channel;++c) |
|
{ |
|
if(abs(sgx.at<float>(i,j*channel+c) - sgy.at<float>(i,j*channel+c)) > |
|
abs(grx.at<float>(i,j*channel+c) - gry.at<float>(i,j*channel+c))) |
|
{ |
|
|
|
srx32.at<float>(i,j*channel+c) = sgx.at<float>(i,j*channel+c) |
|
* smask.at<float>(i,j); |
|
sry32.at<float>(i,j*channel+c) = sgy.at<float>(i,j*channel+c) |
|
* smask.at<float>(i,j); |
|
} |
|
else |
|
{ |
|
srx32.at<float>(i,j*channel+c) = grx.at<float>(i,j*channel+c) |
|
* smask.at<float>(i,j); |
|
sry32.at<float>(i,j*channel+c) = gry.at<float>(i,j*channel+c) |
|
* smask.at<float>(i,j); |
|
} |
|
} |
|
} |
|
} |
|
|
|
} |
|
else if(num == 3) |
|
{ |
|
Mat gray = Mat(mask.size(),CV_8UC1); |
|
Mat gray8 = Mat(mask.size(),CV_8UC3); |
|
cvtColor(mask, gray, COLOR_BGR2GRAY ); |
|
vector <Mat> temp; |
|
split(I,temp); |
|
gray.copyTo(temp[2]); |
|
gray.copyTo(temp[1]); |
|
gray.copyTo(temp[0]); |
|
|
|
merge(temp,gray8); |
|
|
|
getGradientx(gray8,sgx); |
|
getGradienty(gray8,sgy); |
|
|
|
array_product(srx32,sgx,smask); |
|
array_product(sry32,sgy,smask); |
|
|
|
} |
|
|
|
evaluate(I,wmask,cloned); |
|
} |
|
|
|
void Cloning::local_color_change(Mat &I, Mat &mask, Mat &wmask, Mat &cloned, float red_mul=1.0, |
|
float green_mul=1.0, float blue_mul=1.0) |
|
{ |
|
initialization(I,mask,wmask); |
|
|
|
array_product(srx32,sgx,smask); |
|
array_product(sry32,sgy,smask); |
|
scalar_product(srx32,red_mul,green_mul,blue_mul); |
|
scalar_product(sry32,red_mul,green_mul,blue_mul); |
|
|
|
evaluate(I,wmask,cloned); |
|
} |
|
|
|
void Cloning::illum_change(Mat &I, Mat &mask, Mat &wmask, Mat &cloned, float alpha, float beta) |
|
{ |
|
initialization(I,mask,wmask); |
|
|
|
array_product(srx32,sgx,smask); |
|
array_product(sry32,sgy,smask); |
|
|
|
Mat mag = Mat(I.size(),CV_32FC3); |
|
magnitude(srx32,sry32,mag); |
|
|
|
Mat multX, multY, multx_temp, multy_temp; |
|
|
|
multiply(srx32,pow(alpha,beta),multX); |
|
pow(mag,-1*beta, multx_temp); |
|
multiply(multX,multx_temp,srx32); |
|
patchNaNs(srx32); |
|
|
|
multiply(sry32,pow(alpha,beta),multY); |
|
pow(mag,-1*beta, multy_temp); |
|
multiply(multY,multy_temp,sry32); |
|
patchNaNs(sry32); |
|
|
|
Mat zeroMask = (srx32 != 0); |
|
|
|
srx32.copyTo(srx32, zeroMask); |
|
sry32.copyTo(sry32, zeroMask); |
|
|
|
evaluate(I,wmask,cloned); |
|
} |
|
|
|
void Cloning::texture_flatten(Mat &I, Mat &mask, Mat &wmask, double low_threshold, |
|
double high_threshold, int kernel_size, Mat &cloned) |
|
{ |
|
initialization(I,mask,wmask); |
|
|
|
Mat out = Mat(mask.size(),CV_8UC1); |
|
Canny(mask,out,low_threshold,high_threshold,kernel_size); |
|
|
|
Mat zeros(sgx.size(), CV_32FC3); |
|
zeros.setTo(0); |
|
Mat zerosMask = (out != 255); |
|
zeros.copyTo(sgx, zerosMask); |
|
zeros.copyTo(sgy, zerosMask); |
|
|
|
array_product(srx32,sgx,smask); |
|
array_product(sry32,sgy,smask); |
|
|
|
evaluate(I,wmask,cloned); |
|
}
|
|
|