mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1389 lines
46 KiB
1389 lines
46 KiB
#include "boost.h" |
|
#include "cascadeclassifier.h" |
|
#include <queue> |
|
#include "cxmisc.h" |
|
|
|
using namespace std; |
|
|
|
static inline double |
|
logRatio( double val ) |
|
{ |
|
const double eps = 1e-5; |
|
|
|
val = max( val, eps ); |
|
val = min( val, 1. - eps ); |
|
return log( val/(1. - val) ); |
|
} |
|
|
|
#define CV_CMP_FLT(i,j) (i < j) |
|
static CV_IMPLEMENT_QSORT_EX( icvSortFlt, float, CV_CMP_FLT, const float* ) |
|
|
|
#define CV_CMP_NUM_IDX(i,j) (aux[i] < aux[j]) |
|
static CV_IMPLEMENT_QSORT_EX( icvSortIntAux, int, CV_CMP_NUM_IDX, const float* ) |
|
static CV_IMPLEMENT_QSORT_EX( icvSortUShAux, unsigned short, CV_CMP_NUM_IDX, const float* ) |
|
|
|
#define CV_THRESHOLD_EPS (0.00001F) |
|
|
|
static const int MinBlockSize = 1 << 16; |
|
static const int BlockSizeDelta = 1 << 10; |
|
|
|
//----------------------------- CascadeBoostParams ------------------------------------------------- |
|
|
|
CvCascadeBoostParams::CvCascadeBoostParams() : minHitRate( 0.995F), maxFalseAlarm( 0.5F ) |
|
{ |
|
boost_type = CvBoost::GENTLE; |
|
use_surrogates = use_1se_rule = truncate_pruned_tree = false; |
|
} |
|
|
|
CvCascadeBoostParams::CvCascadeBoostParams( int _boostType, |
|
float _minHitRate, float _maxFalseAlarm, |
|
double _weightTrimRate, int _maxDepth, int _maxWeakCount ) : |
|
CvBoostParams( _boostType, _maxWeakCount, _weightTrimRate, _maxDepth, false, 0 ) |
|
{ |
|
boost_type = CvBoost::GENTLE; |
|
minHitRate = _minHitRate; |
|
maxFalseAlarm = _maxFalseAlarm; |
|
use_surrogates = use_1se_rule = truncate_pruned_tree = false; |
|
} |
|
|
|
void CvCascadeBoostParams::write( FileStorage &fs ) const |
|
{ |
|
String boostTypeStr = boost_type == CvBoost::DISCRETE ? CC_DISCRETE_BOOST : |
|
boost_type == CvBoost::REAL ? CC_REAL_BOOST : |
|
boost_type == CvBoost::LOGIT ? CC_LOGIT_BOOST : |
|
boost_type == CvBoost::GENTLE ? CC_GENTLE_BOOST : String(); |
|
CV_Assert( !boostTypeStr.empty() ); |
|
fs << CC_BOOST_TYPE << boostTypeStr; |
|
fs << CC_MINHITRATE << minHitRate; |
|
fs << CC_MAXFALSEALARM << maxFalseAlarm; |
|
fs << CC_TRIM_RATE << weight_trim_rate; |
|
fs << CC_MAX_DEPTH << max_depth; |
|
fs << CC_WEAK_COUNT << weak_count; |
|
} |
|
|
|
bool CvCascadeBoostParams::read( const FileNode &node ) |
|
{ |
|
String boostTypeStr; |
|
FileNode rnode = node[CC_BOOST_TYPE]; |
|
rnode >> boostTypeStr; |
|
boost_type = !boostTypeStr.compare( CC_DISCRETE_BOOST ) ? CvBoost::DISCRETE : |
|
!boostTypeStr.compare( CC_REAL_BOOST ) ? CvBoost::REAL : |
|
!boostTypeStr.compare( CC_LOGIT_BOOST ) ? CvBoost::LOGIT : |
|
!boostTypeStr.compare( CC_GENTLE_BOOST ) ? CvBoost::GENTLE : -1; |
|
if (boost_type == -1) |
|
CV_Error( CV_StsBadArg, "unsupported Boost type" ); |
|
node[CC_MINHITRATE] >> minHitRate; |
|
node[CC_MAXFALSEALARM] >> maxFalseAlarm; |
|
node[CC_TRIM_RATE] >> weight_trim_rate ; |
|
node[CC_MAX_DEPTH] >> max_depth ; |
|
node[CC_WEAK_COUNT] >> weak_count ; |
|
if ( minHitRate <= 0 || minHitRate > 1 || |
|
maxFalseAlarm <= 0 || maxFalseAlarm > 1 || |
|
weight_trim_rate <= 0 || weight_trim_rate > 1 || |
|
max_depth <= 0 || weak_count <= 0 ) |
|
CV_Error( CV_StsBadArg, "bad parameters range"); |
|
return true; |
|
} |
|
|
|
void CvCascadeBoostParams::printDefaults() const |
|
{ |
|
cout << "--boostParams--" << endl; |
|
cout << " [-bt <{" << CC_DISCRETE_BOOST << ", " |
|
<< CC_REAL_BOOST << ", " |
|
<< CC_LOGIT_BOOST ", " |
|
<< CC_GENTLE_BOOST << "(default)}>]" << endl; |
|
cout << " [-minHitRate <min_hit_rate> = " << minHitRate << ">]" << endl; |
|
cout << " [-maxFalseAlarmRate <max_false_alarm_rate = " << maxFalseAlarm << ">]" << endl; |
|
cout << " [-weightTrimRate <weight_trim_rate = " << weight_trim_rate << ">]" << endl; |
|
cout << " [-maxDepth <max_depth_of_weak_tree = " << max_depth << ">]" << endl; |
|
cout << " [-maxWeakCount <max_weak_tree_count = " << weak_count << ">]" << endl; |
|
} |
|
|
|
void CvCascadeBoostParams::printAttrs() const |
|
{ |
|
String boostTypeStr = boost_type == CvBoost::DISCRETE ? CC_DISCRETE_BOOST : |
|
boost_type == CvBoost::REAL ? CC_REAL_BOOST : |
|
boost_type == CvBoost::LOGIT ? CC_LOGIT_BOOST : |
|
boost_type == CvBoost::GENTLE ? CC_GENTLE_BOOST : String(); |
|
CV_Assert( !boostTypeStr.empty() ); |
|
cout << "boostType: " << boostTypeStr << endl; |
|
cout << "minHitRate: " << minHitRate << endl; |
|
cout << "maxFalseAlarmRate: " << maxFalseAlarm << endl; |
|
cout << "weightTrimRate: " << weight_trim_rate << endl; |
|
cout << "maxDepth: " << max_depth << endl; |
|
cout << "maxWeakCount: " << weak_count << endl; |
|
} |
|
|
|
bool CvCascadeBoostParams::scanAttr( const String prmName, const String val) |
|
{ |
|
bool res = true; |
|
|
|
if( !prmName.compare( "-bt" ) ) |
|
{ |
|
boost_type = !val.compare( CC_DISCRETE_BOOST ) ? CvBoost::DISCRETE : |
|
!val.compare( CC_REAL_BOOST ) ? CvBoost::REAL : |
|
!val.compare( CC_LOGIT_BOOST ) ? CvBoost::LOGIT : |
|
!val.compare( CC_GENTLE_BOOST ) ? CvBoost::GENTLE : -1; |
|
if (boost_type == -1) |
|
res = false; |
|
} |
|
else if( !prmName.compare( "-minHitRate" ) ) |
|
{ |
|
minHitRate = (float) atof( val.c_str() ); |
|
} |
|
else if( !prmName.compare( "-maxFalseAlarmRate" ) ) |
|
{ |
|
maxFalseAlarm = (float) atof( val.c_str() ); |
|
} |
|
else if( !prmName.compare( "-weightTrimRate" ) ) |
|
{ |
|
weight_trim_rate = (float) atof( val.c_str() ); |
|
} |
|
else if( !prmName.compare( "-maxDepth" ) ) |
|
{ |
|
max_depth = atoi( val.c_str() ); |
|
} |
|
else if( !prmName.compare( "-maxWeakCount" ) ) |
|
{ |
|
weak_count = atoi( val.c_str() ); |
|
} |
|
else |
|
res = false; |
|
|
|
return res; |
|
} |
|
|
|
//---------------------------- CascadeBoostTrainData ----------------------------- |
|
|
|
CvCascadeBoostTrainData::CvCascadeBoostTrainData( const CvFeatureEvaluator* _featureEvaluator, |
|
const CvDTreeParams& _params ) |
|
{ |
|
is_classifier = true; |
|
var_all = var_count = (int)_featureEvaluator->getNumFeatures(); |
|
|
|
featureEvaluator = _featureEvaluator; |
|
shared = true; |
|
set_params( _params ); |
|
max_c_count = MAX( 2, featureEvaluator->getMaxCatCount() ); |
|
var_type = cvCreateMat( 1, var_count + 2, CV_32SC1 ); |
|
if ( featureEvaluator->getMaxCatCount() > 0 ) |
|
{ |
|
numPrecalcIdx = 0; |
|
cat_var_count = var_count; |
|
ord_var_count = 0; |
|
for( int vi = 0; vi < var_count; vi++ ) |
|
{ |
|
var_type->data.i[vi] = vi; |
|
} |
|
} |
|
else |
|
{ |
|
cat_var_count = 0; |
|
ord_var_count = var_count; |
|
for( int vi = 1; vi <= var_count; vi++ ) |
|
{ |
|
var_type->data.i[vi-1] = -vi; |
|
} |
|
} |
|
var_type->data.i[var_count] = cat_var_count; |
|
var_type->data.i[var_count+1] = cat_var_count+1; |
|
|
|
int maxSplitSize = cvAlign(sizeof(CvDTreeSplit) + (MAX(0,max_c_count - 33)/32)*sizeof(int),sizeof(void*)); |
|
int treeBlockSize = MAX((int)sizeof(CvDTreeNode)*8, maxSplitSize); |
|
treeBlockSize = MAX(treeBlockSize + BlockSizeDelta, MinBlockSize); |
|
tree_storage = cvCreateMemStorage( treeBlockSize ); |
|
node_heap = cvCreateSet( 0, sizeof(node_heap[0]), sizeof(CvDTreeNode), tree_storage ); |
|
split_heap = cvCreateSet( 0, sizeof(split_heap[0]), maxSplitSize, tree_storage ); |
|
} |
|
|
|
CvCascadeBoostTrainData::CvCascadeBoostTrainData( const CvFeatureEvaluator* _featureEvaluator, |
|
int _numSamples, |
|
int _precalcValBufSize, int _precalcIdxBufSize, |
|
const CvDTreeParams& _params ) |
|
{ |
|
setData( _featureEvaluator, _numSamples, _precalcValBufSize, _precalcIdxBufSize, _params ); |
|
} |
|
|
|
void CvCascadeBoostTrainData::setData( const CvFeatureEvaluator* _featureEvaluator, |
|
int _numSamples, |
|
int _precalcValBufSize, int _precalcIdxBufSize, |
|
const CvDTreeParams& _params ) |
|
{ |
|
int* idst = 0; |
|
unsigned short* udst = 0; |
|
|
|
clear(); |
|
shared = true; |
|
have_labels = true; |
|
have_priors = false; |
|
is_classifier = true; |
|
|
|
rng = &cv::theRNG(); |
|
|
|
set_params( _params ); |
|
|
|
CV_Assert( _featureEvaluator ); |
|
featureEvaluator = _featureEvaluator; |
|
|
|
max_c_count = MAX( 2, featureEvaluator->getMaxCatCount() ); |
|
_resp = featureEvaluator->getCls(); |
|
responses = &_resp; |
|
// TODO: check responses: elements must be 0 or 1 |
|
|
|
if( _precalcValBufSize < 0 || _precalcIdxBufSize < 0) |
|
CV_Error( CV_StsOutOfRange, "_numPrecalcVal and _numPrecalcIdx must be positive or 0" ); |
|
|
|
var_count = var_all = featureEvaluator->getNumFeatures(); |
|
sample_count = _numSamples; |
|
|
|
is_buf_16u = false; |
|
if (sample_count < 65536) |
|
is_buf_16u = true; |
|
|
|
numPrecalcVal = min( cvRound((double)_precalcValBufSize*1048576. / (sizeof(float)*sample_count)), var_count ); |
|
numPrecalcIdx = min( cvRound((double)_precalcIdxBufSize*1048576. / |
|
((is_buf_16u ? sizeof(unsigned short) : sizeof (int))*sample_count)), var_count ); |
|
|
|
assert( numPrecalcIdx >= 0 && numPrecalcVal >= 0 ); |
|
|
|
valCache.create( numPrecalcVal, sample_count, CV_32FC1 ); |
|
var_type = cvCreateMat( 1, var_count + 2, CV_32SC1 ); |
|
|
|
if ( featureEvaluator->getMaxCatCount() > 0 ) |
|
{ |
|
numPrecalcIdx = 0; |
|
cat_var_count = var_count; |
|
ord_var_count = 0; |
|
for( int vi = 0; vi < var_count; vi++ ) |
|
{ |
|
var_type->data.i[vi] = vi; |
|
} |
|
} |
|
else |
|
{ |
|
cat_var_count = 0; |
|
ord_var_count = var_count; |
|
for( int vi = 1; vi <= var_count; vi++ ) |
|
{ |
|
var_type->data.i[vi-1] = -vi; |
|
} |
|
} |
|
var_type->data.i[var_count] = cat_var_count; |
|
var_type->data.i[var_count+1] = cat_var_count+1; |
|
work_var_count = ( cat_var_count ? 0 : numPrecalcIdx ) + 1; |
|
buf_size = (work_var_count + 1) * sample_count; |
|
buf_count = 2; |
|
|
|
if ( is_buf_16u ) |
|
buf = cvCreateMat( buf_count, buf_size, CV_16UC1 ); |
|
else |
|
buf = cvCreateMat( buf_count, buf_size, CV_32SC1 ); |
|
|
|
cat_count = cvCreateMat( 1, cat_var_count + 1, CV_32SC1 ); |
|
|
|
// precalculate valCache and set indices in buf |
|
precalculate(); |
|
|
|
// now calculate the maximum size of split, |
|
// create memory storage that will keep nodes and splits of the decision tree |
|
// allocate root node and the buffer for the whole training data |
|
int maxSplitSize = cvAlign(sizeof(CvDTreeSplit) + |
|
(MAX(0,sample_count - 33)/32)*sizeof(int),sizeof(void*)); |
|
int treeBlockSize = MAX((int)sizeof(CvDTreeNode)*8, maxSplitSize); |
|
treeBlockSize = MAX(treeBlockSize + BlockSizeDelta, MinBlockSize); |
|
tree_storage = cvCreateMemStorage( treeBlockSize ); |
|
node_heap = cvCreateSet( 0, sizeof(*node_heap), sizeof(CvDTreeNode), tree_storage ); |
|
|
|
int nvSize = var_count*sizeof(int); |
|
nvSize = cvAlign(MAX( nvSize, (int)sizeof(CvSetElem) ), sizeof(void*)); |
|
int tempBlockSize = nvSize; |
|
tempBlockSize = MAX( tempBlockSize + BlockSizeDelta, MinBlockSize ); |
|
temp_storage = cvCreateMemStorage( tempBlockSize ); |
|
nv_heap = cvCreateSet( 0, sizeof(*nv_heap), nvSize, temp_storage ); |
|
|
|
data_root = new_node( 0, sample_count, 0, 0 ); |
|
|
|
// set sample labels |
|
if (is_buf_16u) |
|
udst = (unsigned short*)(buf->data.s + work_var_count*sample_count); |
|
else |
|
idst = buf->data.i + work_var_count*sample_count; |
|
|
|
for (int si = 0; si < sample_count; si++) |
|
{ |
|
if (udst) |
|
udst[si] = (unsigned short)si; |
|
else |
|
idst[si] = si; |
|
} |
|
for( int vi = 0; vi < var_count; vi++ ) |
|
data_root->set_num_valid(vi, sample_count); |
|
for( int vi = 0; vi < cat_var_count; vi++ ) |
|
cat_count->data.i[vi] = max_c_count; |
|
|
|
cat_count->data.i[cat_var_count] = 2; |
|
|
|
maxSplitSize = cvAlign(sizeof(CvDTreeSplit) + |
|
(MAX(0,max_c_count - 33)/32)*sizeof(int),sizeof(void*)); |
|
split_heap = cvCreateSet( 0, sizeof(*split_heap), maxSplitSize, tree_storage ); |
|
|
|
priors = cvCreateMat( 1, get_num_classes(), CV_64F ); |
|
cvSet(priors, cvScalar(1)); |
|
priors_mult = cvCloneMat( priors ); |
|
counts = cvCreateMat( 1, get_num_classes(), CV_32SC1 ); |
|
direction = cvCreateMat( 1, sample_count, CV_8UC1 ); |
|
split_buf = cvCreateMat( 1, sample_count, CV_32SC1 ); |
|
} |
|
|
|
void CvCascadeBoostTrainData::free_train_data() |
|
{ |
|
CvDTreeTrainData::free_train_data(); |
|
valCache.release(); |
|
} |
|
|
|
const int* CvCascadeBoostTrainData::get_class_labels( CvDTreeNode* n, int* labelsBuf) |
|
{ |
|
int nodeSampleCount = n->sample_count; |
|
int rStep = CV_IS_MAT_CONT( responses->type ) ? 1 : responses->step / CV_ELEM_SIZE( responses->type ); |
|
|
|
int* sampleIndicesBuf = labelsBuf; // |
|
const int* sampleIndices = get_sample_indices(n, sampleIndicesBuf); |
|
for( int si = 0; si < nodeSampleCount; si++ ) |
|
{ |
|
int sidx = sampleIndices[si]; |
|
labelsBuf[si] = (int)responses->data.fl[sidx*rStep]; |
|
} |
|
return labelsBuf; |
|
} |
|
|
|
const int* CvCascadeBoostTrainData::get_sample_indices( CvDTreeNode* n, int* indicesBuf ) |
|
{ |
|
return CvDTreeTrainData::get_cat_var_data( n, get_work_var_count(), indicesBuf ); |
|
} |
|
|
|
const int* CvCascadeBoostTrainData::get_cv_labels( CvDTreeNode* n, int* labels_buf ) |
|
{ |
|
return CvDTreeTrainData::get_cat_var_data( n, get_work_var_count() - 1, labels_buf ); |
|
} |
|
|
|
void CvCascadeBoostTrainData::get_ord_var_data( CvDTreeNode* n, int vi, float* ordValuesBuf, int* sortedIndicesBuf, |
|
const float** ordValues, const int** sortedIndices, int* sampleIndicesBuf ) |
|
{ |
|
int nodeSampleCount = n->sample_count; |
|
const int* sampleIndices = get_sample_indices(n, sampleIndicesBuf); |
|
|
|
if ( vi < numPrecalcIdx ) |
|
{ |
|
if( !is_buf_16u ) |
|
*sortedIndices = buf->data.i + n->buf_idx*buf->cols + vi*sample_count + n->offset; |
|
else |
|
{ |
|
const unsigned short* shortIndices = (const unsigned short*)(buf->data.s + n->buf_idx*buf->cols + |
|
vi*sample_count + n->offset ); |
|
for( int i = 0; i < nodeSampleCount; i++ ) |
|
sortedIndicesBuf[i] = shortIndices[i]; |
|
*sortedIndices = sortedIndicesBuf; |
|
} |
|
|
|
if ( vi < numPrecalcVal ) |
|
{ |
|
for( int i = 0; i < nodeSampleCount; i++ ) |
|
{ |
|
int idx = (*sortedIndices)[i]; |
|
idx = sampleIndices[idx]; |
|
ordValuesBuf[i] = valCache.at<float>( vi, idx); |
|
} |
|
} |
|
else |
|
{ |
|
for( int i = 0; i < nodeSampleCount; i++ ) |
|
{ |
|
int idx = (*sortedIndices)[i]; |
|
idx = sampleIndices[idx]; |
|
ordValuesBuf[i] = (*featureEvaluator)( vi, idx); |
|
} |
|
} |
|
} |
|
else // vi >= numPrecalcIdx |
|
{ |
|
vector<float> sampleValuesBuf; |
|
float* sampleValues = 0; |
|
|
|
if( sizeof(float) == sizeof(int) ) |
|
{ |
|
// use sampleIndices as temporary buffer for values |
|
sampleValues = (float*)sampleIndices; |
|
} |
|
else |
|
{ |
|
sampleValuesBuf.resize(nodeSampleCount); |
|
sampleValues = &sampleValuesBuf[0]; |
|
} |
|
|
|
if ( vi < numPrecalcVal ) |
|
{ |
|
for( int i = 0; i < nodeSampleCount; i++ ) |
|
{ |
|
sortedIndicesBuf[i] = i; |
|
sampleValues[i] = valCache.at<float>( vi, sampleIndices[i] ); |
|
} |
|
} |
|
else |
|
{ |
|
for( int i = 0; i < nodeSampleCount; i++ ) |
|
{ |
|
sortedIndicesBuf[i] = i; |
|
sampleValues[i] = (*featureEvaluator)( vi, sampleIndices[i]); |
|
} |
|
} |
|
icvSortIntAux( sortedIndicesBuf, nodeSampleCount, &sampleValues[0] ); |
|
for( int i = 0; i < nodeSampleCount; i++ ) |
|
ordValuesBuf[i] = (&sampleValues[0])[sortedIndicesBuf[i]]; |
|
*sortedIndices = sortedIndicesBuf; |
|
} |
|
|
|
*ordValues = ordValuesBuf; |
|
} |
|
|
|
const int* CvCascadeBoostTrainData::get_cat_var_data( CvDTreeNode* n, int vi, int* catValuesBuf ) |
|
{ |
|
int nodeSampleCount = n->sample_count; |
|
int* sampleIndicesBuf = catValuesBuf; // |
|
const int* sampleIndices = get_sample_indices(n, sampleIndicesBuf); |
|
|
|
if ( vi < numPrecalcVal ) |
|
{ |
|
for( int i = 0; i < nodeSampleCount; i++ ) |
|
catValuesBuf[i] = (int) valCache.at<float>( vi, sampleIndices[i]); |
|
} |
|
else |
|
{ |
|
if( vi >= numPrecalcVal && vi < var_count ) |
|
{ |
|
for( int i = 0; i < nodeSampleCount; i++ ) |
|
catValuesBuf[i] = (int)(*featureEvaluator)( vi, sampleIndices[i] ); |
|
} |
|
else |
|
{ |
|
get_cv_labels( n, catValuesBuf ); |
|
} |
|
} |
|
|
|
return catValuesBuf; |
|
} |
|
|
|
float CvCascadeBoostTrainData::getVarValue( int vi, int si ) |
|
{ |
|
if ( vi < numPrecalcVal && !valCache.empty() ) |
|
return valCache.at<float>( vi, si ); |
|
return (*featureEvaluator)( vi, si ); |
|
} |
|
|
|
|
|
struct FeatureIdxOnlyPrecalc |
|
{ |
|
FeatureIdxOnlyPrecalc( const CvFeatureEvaluator* _featureEvaluator, CvMat* _buf, int _sample_count, bool _is_buf_16u ) |
|
{ |
|
featureEvaluator = _featureEvaluator; |
|
sample_count = _sample_count; |
|
udst = (unsigned short*)_buf->data.s; |
|
idst = _buf->data.i; |
|
is_buf_16u = _is_buf_16u; |
|
} |
|
void operator()( const BlockedRange& range ) const |
|
{ |
|
cv::AutoBuffer<float> valCache(sample_count); |
|
float* valCachePtr = (float*)valCache; |
|
for ( int fi = range.begin(); fi < range.end(); fi++) |
|
{ |
|
for( int si = 0; si < sample_count; si++ ) |
|
{ |
|
valCachePtr[si] = (*featureEvaluator)( fi, si ); |
|
if ( is_buf_16u ) |
|
*(udst + fi*sample_count + si) = (unsigned short)si; |
|
else |
|
*(idst + fi*sample_count + si) = si; |
|
} |
|
if ( is_buf_16u ) |
|
icvSortUShAux( udst + fi*sample_count, sample_count, valCachePtr ); |
|
else |
|
icvSortIntAux( idst + fi*sample_count, sample_count, valCachePtr ); |
|
} |
|
} |
|
const CvFeatureEvaluator* featureEvaluator; |
|
int sample_count; |
|
int* idst; |
|
unsigned short* udst; |
|
bool is_buf_16u; |
|
}; |
|
|
|
struct FeatureValAndIdxPrecalc |
|
{ |
|
FeatureValAndIdxPrecalc( const CvFeatureEvaluator* _featureEvaluator, CvMat* _buf, Mat* _valCache, int _sample_count, bool _is_buf_16u ) |
|
{ |
|
featureEvaluator = _featureEvaluator; |
|
valCache = _valCache; |
|
sample_count = _sample_count; |
|
udst = (unsigned short*)_buf->data.s; |
|
idst = _buf->data.i; |
|
is_buf_16u = _is_buf_16u; |
|
} |
|
void operator()( const BlockedRange& range ) const |
|
{ |
|
for ( int fi = range.begin(); fi < range.end(); fi++) |
|
{ |
|
for( int si = 0; si < sample_count; si++ ) |
|
{ |
|
valCache->at<float>(fi,si) = (*featureEvaluator)( fi, si ); |
|
if ( is_buf_16u ) |
|
*(udst + fi*sample_count + si) = (unsigned short)si; |
|
else |
|
*(idst + fi*sample_count + si) = si; |
|
} |
|
if ( is_buf_16u ) |
|
icvSortUShAux( udst + fi*sample_count, sample_count, valCache->ptr<float>(fi) ); |
|
else |
|
icvSortIntAux( idst + fi*sample_count, sample_count, valCache->ptr<float>(fi) ); |
|
} |
|
} |
|
const CvFeatureEvaluator* featureEvaluator; |
|
Mat* valCache; |
|
int sample_count; |
|
int* idst; |
|
unsigned short* udst; |
|
bool is_buf_16u; |
|
}; |
|
|
|
struct FeatureValOnlyPrecalc |
|
{ |
|
FeatureValOnlyPrecalc( const CvFeatureEvaluator* _featureEvaluator, Mat* _valCache, int _sample_count ) |
|
{ |
|
featureEvaluator = _featureEvaluator; |
|
valCache = _valCache; |
|
sample_count = _sample_count; |
|
} |
|
void operator()( const BlockedRange& range ) const |
|
{ |
|
for ( int fi = range.begin(); fi < range.end(); fi++) |
|
for( int si = 0; si < sample_count; si++ ) |
|
valCache->at<float>(fi,si) = (*featureEvaluator)( fi, si ); |
|
} |
|
const CvFeatureEvaluator* featureEvaluator; |
|
Mat* valCache; |
|
int sample_count; |
|
}; |
|
|
|
void CvCascadeBoostTrainData::precalculate() |
|
{ |
|
int minNum = MIN( numPrecalcVal, numPrecalcIdx); |
|
|
|
double proctime = -TIME( 0 ); |
|
parallel_for( BlockedRange(numPrecalcVal, numPrecalcIdx), |
|
FeatureIdxOnlyPrecalc(featureEvaluator, buf, sample_count, is_buf_16u!=0) ); |
|
parallel_for( BlockedRange(0, minNum), |
|
FeatureValAndIdxPrecalc(featureEvaluator, buf, &valCache, sample_count, is_buf_16u!=0) ); |
|
parallel_for( BlockedRange(minNum, numPrecalcVal), |
|
FeatureValOnlyPrecalc(featureEvaluator, &valCache, sample_count) ); |
|
cout << "Precalculation time: " << (proctime + TIME( 0 )) << endl; |
|
} |
|
|
|
//-------------------------------- CascadeBoostTree ---------------------------------------- |
|
|
|
CvDTreeNode* CvCascadeBoostTree::predict( int sampleIdx ) const |
|
{ |
|
CvDTreeNode* node = root; |
|
if( !node ) |
|
CV_Error( CV_StsError, "The tree has not been trained yet" ); |
|
|
|
if ( ((CvCascadeBoostTrainData*)data)->featureEvaluator->getMaxCatCount() == 0 ) // ordered |
|
{ |
|
while( node->left ) |
|
{ |
|
CvDTreeSplit* split = node->split; |
|
float val = ((CvCascadeBoostTrainData*)data)->getVarValue( split->var_idx, sampleIdx ); |
|
node = val <= split->ord.c ? node->left : node->right; |
|
} |
|
} |
|
else // categorical |
|
{ |
|
while( node->left ) |
|
{ |
|
CvDTreeSplit* split = node->split; |
|
int c = (int)((CvCascadeBoostTrainData*)data)->getVarValue( split->var_idx, sampleIdx ); |
|
node = CV_DTREE_CAT_DIR(c, split->subset) < 0 ? node->left : node->right; |
|
} |
|
} |
|
return node; |
|
} |
|
|
|
void CvCascadeBoostTree::write( FileStorage &fs, const Mat& featureMap ) |
|
{ |
|
int maxCatCount = ((CvCascadeBoostTrainData*)data)->featureEvaluator->getMaxCatCount(); |
|
int subsetN = (maxCatCount + 31)/32; |
|
queue<CvDTreeNode*> internalNodesQueue; |
|
int size = (int)pow( 2.f, (float)ensemble->get_params().max_depth); |
|
Ptr<float> leafVals = new float[size]; |
|
int leafValIdx = 0; |
|
int internalNodeIdx = 1; |
|
CvDTreeNode* tempNode; |
|
|
|
CV_DbgAssert( root ); |
|
internalNodesQueue.push( root ); |
|
|
|
fs << "{"; |
|
fs << CC_INTERNAL_NODES << "[:"; |
|
while (!internalNodesQueue.empty()) |
|
{ |
|
tempNode = internalNodesQueue.front(); |
|
CV_Assert( tempNode->left ); |
|
if ( !tempNode->left->left && !tempNode->left->right) // left node is leaf |
|
{ |
|
leafVals[-leafValIdx] = (float)tempNode->left->value; |
|
fs << leafValIdx-- ; |
|
} |
|
else |
|
{ |
|
internalNodesQueue.push( tempNode->left ); |
|
fs << internalNodeIdx++; |
|
} |
|
CV_Assert( tempNode->right ); |
|
if ( !tempNode->right->left && !tempNode->right->right) // right node is leaf |
|
{ |
|
leafVals[-leafValIdx] = (float)tempNode->right->value; |
|
fs << leafValIdx--; |
|
} |
|
else |
|
{ |
|
internalNodesQueue.push( tempNode->right ); |
|
fs << internalNodeIdx++; |
|
} |
|
int fidx = tempNode->split->var_idx; |
|
fidx = featureMap.empty() ? fidx : featureMap.at<int>(0, fidx); |
|
fs << fidx; |
|
if ( !maxCatCount ) |
|
fs << tempNode->split->ord.c; |
|
else |
|
for( int i = 0; i < subsetN; i++ ) |
|
fs << tempNode->split->subset[i]; |
|
internalNodesQueue.pop(); |
|
} |
|
fs << "]"; // CC_INTERNAL_NODES |
|
|
|
fs << CC_LEAF_VALUES << "[:"; |
|
for (int ni = 0; ni < -leafValIdx; ni++) |
|
fs << leafVals[ni]; |
|
fs << "]"; // CC_LEAF_VALUES |
|
fs << "}"; |
|
} |
|
|
|
void CvCascadeBoostTree::read( const FileNode &node, CvBoost* _ensemble, |
|
CvDTreeTrainData* _data ) |
|
{ |
|
int maxCatCount = ((CvCascadeBoostTrainData*)_data)->featureEvaluator->getMaxCatCount(); |
|
int subsetN = (maxCatCount + 31)/32; |
|
int step = 3 + ( maxCatCount>0 ? subsetN : 1 ); |
|
|
|
queue<CvDTreeNode*> internalNodesQueue; |
|
FileNodeIterator internalNodesIt, leafValsuesIt; |
|
CvDTreeNode* prntNode, *cldNode; |
|
|
|
clear(); |
|
data = _data; |
|
ensemble = _ensemble; |
|
pruned_tree_idx = 0; |
|
|
|
// read tree nodes |
|
FileNode rnode = node[CC_INTERNAL_NODES]; |
|
internalNodesIt = rnode.end(); |
|
leafValsuesIt = node[CC_LEAF_VALUES].end(); |
|
internalNodesIt--; leafValsuesIt--; |
|
for( size_t i = 0; i < rnode.size()/step; i++ ) |
|
{ |
|
prntNode = data->new_node( 0, 0, 0, 0 ); |
|
if ( maxCatCount > 0 ) |
|
{ |
|
prntNode->split = data->new_split_cat( 0, 0 ); |
|
for( int j = subsetN-1; j>=0; j--) |
|
{ |
|
*internalNodesIt >> prntNode->split->subset[j]; internalNodesIt--; |
|
} |
|
} |
|
else |
|
{ |
|
float split_value; |
|
*internalNodesIt >> split_value; internalNodesIt--; |
|
prntNode->split = data->new_split_ord( 0, split_value, 0, 0, 0); |
|
} |
|
*internalNodesIt >> prntNode->split->var_idx; internalNodesIt--; |
|
int ridx, lidx; |
|
*internalNodesIt >> ridx; internalNodesIt--; |
|
*internalNodesIt >> lidx;internalNodesIt--; |
|
if ( ridx <= 0) |
|
{ |
|
prntNode->right = cldNode = data->new_node( 0, 0, 0, 0 ); |
|
*leafValsuesIt >> cldNode->value; leafValsuesIt--; |
|
cldNode->parent = prntNode; |
|
} |
|
else |
|
{ |
|
prntNode->right = internalNodesQueue.front(); |
|
prntNode->right->parent = prntNode; |
|
internalNodesQueue.pop(); |
|
} |
|
|
|
if ( lidx <= 0) |
|
{ |
|
prntNode->left = cldNode = data->new_node( 0, 0, 0, 0 ); |
|
*leafValsuesIt >> cldNode->value; leafValsuesIt--; |
|
cldNode->parent = prntNode; |
|
} |
|
else |
|
{ |
|
prntNode->left = internalNodesQueue.front(); |
|
prntNode->left->parent = prntNode; |
|
internalNodesQueue.pop(); |
|
} |
|
|
|
internalNodesQueue.push( prntNode ); |
|
} |
|
|
|
root = internalNodesQueue.front(); |
|
internalNodesQueue.pop(); |
|
} |
|
|
|
void CvCascadeBoostTree::split_node_data( CvDTreeNode* node ) |
|
{ |
|
int n = node->sample_count, nl, nr, scount = data->sample_count; |
|
char* dir = (char*)data->direction->data.ptr; |
|
CvDTreeNode *left = 0, *right = 0; |
|
int* newIdx = data->split_buf->data.i; |
|
int newBufIdx = data->get_child_buf_idx( node ); |
|
int workVarCount = data->get_work_var_count(); |
|
CvMat* buf = data->buf; |
|
cv::AutoBuffer<uchar> inn_buf(n*(3*sizeof(int)+sizeof(float))); |
|
int* tempBuf = (int*)(uchar*)inn_buf; |
|
bool splitInputData; |
|
|
|
complete_node_dir(node); |
|
|
|
for( int i = nl = nr = 0; i < n; i++ ) |
|
{ |
|
int d = dir[i]; |
|
// initialize new indices for splitting ordered variables |
|
newIdx[i] = (nl & (d-1)) | (nr & -d); // d ? ri : li |
|
nr += d; |
|
nl += d^1; |
|
} |
|
|
|
node->left = left = data->new_node( node, nl, newBufIdx, node->offset ); |
|
node->right = right = data->new_node( node, nr, newBufIdx, node->offset + nl ); |
|
|
|
splitInputData = node->depth + 1 < data->params.max_depth && |
|
(node->left->sample_count > data->params.min_sample_count || |
|
node->right->sample_count > data->params.min_sample_count); |
|
|
|
// split ordered variables, keep both halves sorted. |
|
for( int vi = 0; vi < ((CvCascadeBoostTrainData*)data)->numPrecalcIdx; vi++ ) |
|
{ |
|
int ci = data->get_var_type(vi); |
|
if( ci >= 0 || !splitInputData ) |
|
continue; |
|
|
|
int n1 = node->get_num_valid(vi); |
|
float *src_val_buf = (float*)(tempBuf + n); |
|
int *src_sorted_idx_buf = (int*)(src_val_buf + n); |
|
int *src_sample_idx_buf = src_sorted_idx_buf + n; |
|
const int* src_sorted_idx = 0; |
|
const float* src_val = 0; |
|
data->get_ord_var_data(node, vi, src_val_buf, src_sorted_idx_buf, &src_val, &src_sorted_idx, src_sample_idx_buf); |
|
|
|
for(int i = 0; i < n; i++) |
|
tempBuf[i] = src_sorted_idx[i]; |
|
|
|
if (data->is_buf_16u) |
|
{ |
|
unsigned short *ldst, *rdst, *ldst0, *rdst0; |
|
ldst0 = ldst = (unsigned short*)(buf->data.s + left->buf_idx*buf->cols + |
|
vi*scount + left->offset); |
|
rdst0 = rdst = (unsigned short*)(ldst + nl); |
|
|
|
// split sorted |
|
for( int i = 0; i < n1; i++ ) |
|
{ |
|
int idx = tempBuf[i]; |
|
int d = dir[idx]; |
|
idx = newIdx[idx]; |
|
if (d) |
|
{ |
|
*rdst = (unsigned short)idx; |
|
rdst++; |
|
} |
|
else |
|
{ |
|
*ldst = (unsigned short)idx; |
|
ldst++; |
|
} |
|
} |
|
assert( n1 == n); |
|
|
|
left->set_num_valid(vi, (int)(ldst - ldst0)); |
|
right->set_num_valid(vi, (int)(rdst - rdst0)); |
|
} |
|
else |
|
{ |
|
int *ldst0, *ldst, *rdst0, *rdst; |
|
ldst0 = ldst = buf->data.i + left->buf_idx*buf->cols + |
|
vi*scount + left->offset; |
|
rdst0 = rdst = buf->data.i + right->buf_idx*buf->cols + |
|
vi*scount + right->offset; |
|
|
|
// split sorted |
|
for( int i = 0; i < n1; i++ ) |
|
{ |
|
int idx = tempBuf[i]; |
|
int d = dir[idx]; |
|
idx = newIdx[idx]; |
|
if (d) |
|
{ |
|
*rdst = idx; |
|
rdst++; |
|
} |
|
else |
|
{ |
|
*ldst = idx; |
|
ldst++; |
|
} |
|
} |
|
|
|
left->set_num_valid(vi, (int)(ldst - ldst0)); |
|
right->set_num_valid(vi, (int)(rdst - rdst0)); |
|
CV_Assert( n1 == n); |
|
} |
|
} |
|
|
|
// split cv_labels using newIdx relocation table |
|
int *src_lbls_buf = tempBuf + n; |
|
const int* src_lbls = data->get_cv_labels(node, src_lbls_buf); |
|
|
|
for(int i = 0; i < n; i++) |
|
tempBuf[i] = src_lbls[i]; |
|
|
|
if (data->is_buf_16u) |
|
{ |
|
unsigned short *ldst = (unsigned short *)(buf->data.s + left->buf_idx*buf->cols + |
|
(workVarCount-1)*scount + left->offset); |
|
unsigned short *rdst = (unsigned short *)(buf->data.s + right->buf_idx*buf->cols + |
|
(workVarCount-1)*scount + right->offset); |
|
|
|
for( int i = 0; i < n; i++ ) |
|
{ |
|
int idx = tempBuf[i]; |
|
if (dir[i]) |
|
{ |
|
*rdst = (unsigned short)idx; |
|
rdst++; |
|
} |
|
else |
|
{ |
|
*ldst = (unsigned short)idx; |
|
ldst++; |
|
} |
|
} |
|
|
|
} |
|
else |
|
{ |
|
int *ldst = buf->data.i + left->buf_idx*buf->cols + |
|
(workVarCount-1)*scount + left->offset; |
|
int *rdst = buf->data.i + right->buf_idx*buf->cols + |
|
(workVarCount-1)*scount + right->offset; |
|
|
|
for( int i = 0; i < n; i++ ) |
|
{ |
|
int idx = tempBuf[i]; |
|
if (dir[i]) |
|
{ |
|
*rdst = idx; |
|
rdst++; |
|
} |
|
else |
|
{ |
|
*ldst = idx; |
|
ldst++; |
|
} |
|
} |
|
} |
|
for( int vi = 0; vi < data->var_count; vi++ ) |
|
{ |
|
left->set_num_valid(vi, (int)(nl)); |
|
right->set_num_valid(vi, (int)(nr)); |
|
} |
|
|
|
// split sample indices |
|
int *sampleIdx_src_buf = tempBuf + n; |
|
const int* sampleIdx_src = data->get_sample_indices(node, sampleIdx_src_buf); |
|
|
|
for(int i = 0; i < n; i++) |
|
tempBuf[i] = sampleIdx_src[i]; |
|
|
|
if (data->is_buf_16u) |
|
{ |
|
unsigned short* ldst = (unsigned short*)(buf->data.s + left->buf_idx*buf->cols + |
|
workVarCount*scount + left->offset); |
|
unsigned short* rdst = (unsigned short*)(buf->data.s + right->buf_idx*buf->cols + |
|
workVarCount*scount + right->offset); |
|
for (int i = 0; i < n; i++) |
|
{ |
|
unsigned short idx = (unsigned short)tempBuf[i]; |
|
if (dir[i]) |
|
{ |
|
*rdst = idx; |
|
rdst++; |
|
} |
|
else |
|
{ |
|
*ldst = idx; |
|
ldst++; |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
int* ldst = buf->data.i + left->buf_idx*buf->cols + |
|
workVarCount*scount + left->offset; |
|
int* rdst = buf->data.i + right->buf_idx*buf->cols + |
|
workVarCount*scount + right->offset; |
|
for (int i = 0; i < n; i++) |
|
{ |
|
int idx = tempBuf[i]; |
|
if (dir[i]) |
|
{ |
|
*rdst = idx; |
|
rdst++; |
|
} |
|
else |
|
{ |
|
*ldst = idx; |
|
ldst++; |
|
} |
|
} |
|
} |
|
|
|
// deallocate the parent node data that is not needed anymore |
|
data->free_node_data(node); |
|
} |
|
|
|
void auxMarkFeaturesInMap( const CvDTreeNode* node, Mat& featureMap) |
|
{ |
|
if ( node && node->split ) |
|
{ |
|
featureMap.ptr<int>(0)[node->split->var_idx] = 1; |
|
auxMarkFeaturesInMap( node->left, featureMap ); |
|
auxMarkFeaturesInMap( node->right, featureMap ); |
|
} |
|
} |
|
|
|
void CvCascadeBoostTree::markFeaturesInMap( Mat& featureMap ) |
|
{ |
|
auxMarkFeaturesInMap( root, featureMap ); |
|
} |
|
|
|
//----------------------------------- CascadeBoost -------------------------------------- |
|
|
|
bool CvCascadeBoost::train( const CvFeatureEvaluator* _featureEvaluator, |
|
int _numSamples, |
|
int _precalcValBufSize, int _precalcIdxBufSize, |
|
const CvCascadeBoostParams& _params ) |
|
{ |
|
CV_Assert( !data ); |
|
clear(); |
|
data = new CvCascadeBoostTrainData( _featureEvaluator, _numSamples, |
|
_precalcValBufSize, _precalcIdxBufSize, _params ); |
|
CvMemStorage *storage = cvCreateMemStorage(); |
|
weak = cvCreateSeq( 0, sizeof(CvSeq), sizeof(CvBoostTree*), storage ); |
|
storage = 0; |
|
|
|
set_params( _params ); |
|
if ( (_params.boost_type == LOGIT) || (_params.boost_type == GENTLE) ) |
|
data->do_responses_copy(); |
|
|
|
update_weights( 0 ); |
|
|
|
cout << "+----+---------+---------+" << endl; |
|
cout << "| N | HR | FA |" << endl; |
|
cout << "+----+---------+---------+" << endl; |
|
|
|
do |
|
{ |
|
CvCascadeBoostTree* tree = new CvCascadeBoostTree; |
|
if( !tree->train( data, subsample_mask, this ) ) |
|
{ |
|
// TODO: may be should finish the loop (!!!) |
|
assert(0); |
|
delete tree; |
|
continue; |
|
} |
|
cvSeqPush( weak, &tree ); |
|
update_weights( tree ); |
|
trim_weights(); |
|
} |
|
while( !isErrDesired() && (weak->total < params.weak_count) ); |
|
|
|
data->is_classifier = true; |
|
data->free_train_data(); |
|
return true; |
|
} |
|
|
|
float CvCascadeBoost::predict( int sampleIdx, bool returnSum ) const |
|
{ |
|
CV_Assert( weak ); |
|
double sum = 0; |
|
CvSeqReader reader; |
|
cvStartReadSeq( weak, &reader ); |
|
cvSetSeqReaderPos( &reader, 0 ); |
|
for( int i = 0; i < weak->total; i++ ) |
|
{ |
|
CvBoostTree* wtree; |
|
CV_READ_SEQ_ELEM( wtree, reader ); |
|
sum += ((CvCascadeBoostTree*)wtree)->predict(sampleIdx)->value; |
|
} |
|
if( !returnSum ) |
|
sum = sum < threshold - CV_THRESHOLD_EPS ? 0.0 : 1.0; |
|
return (float)sum; |
|
} |
|
|
|
bool CvCascadeBoost::set_params( const CvBoostParams& _params ) |
|
{ |
|
minHitRate = ((CvCascadeBoostParams&)_params).minHitRate; |
|
maxFalseAlarm = ((CvCascadeBoostParams&)_params).maxFalseAlarm; |
|
return ( ( minHitRate > 0 ) && ( minHitRate < 1) && |
|
( maxFalseAlarm > 0 ) && ( maxFalseAlarm < 1) && |
|
CvBoost::set_params( _params )); |
|
} |
|
|
|
void CvCascadeBoost::update_weights( CvBoostTree* tree ) |
|
{ |
|
int n = data->sample_count; |
|
double sumW = 0.; |
|
int step = 0; |
|
float* fdata = 0; |
|
int *sampleIdxBuf; |
|
const int* sampleIdx = 0; |
|
int inn_buf_size = ((params.boost_type == LOGIT) || (params.boost_type == GENTLE) ? n*sizeof(int) : 0) + |
|
( !tree ? n*sizeof(int) : 0 ); |
|
cv::AutoBuffer<uchar> inn_buf(inn_buf_size); |
|
uchar* cur_inn_buf_pos = (uchar*)inn_buf; |
|
if ( (params.boost_type == LOGIT) || (params.boost_type == GENTLE) ) |
|
{ |
|
step = CV_IS_MAT_CONT(data->responses_copy->type) ? |
|
1 : data->responses_copy->step / CV_ELEM_SIZE(data->responses_copy->type); |
|
fdata = data->responses_copy->data.fl; |
|
sampleIdxBuf = (int*)cur_inn_buf_pos; cur_inn_buf_pos = (uchar*)(sampleIdxBuf + n); |
|
sampleIdx = data->get_sample_indices( data->data_root, sampleIdxBuf ); |
|
} |
|
CvMat* buf = data->buf; |
|
if( !tree ) // before training the first tree, initialize weights and other parameters |
|
{ |
|
int* classLabelsBuf = (int*)cur_inn_buf_pos; cur_inn_buf_pos = (uchar*)(classLabelsBuf + n); |
|
const int* classLabels = data->get_class_labels(data->data_root, classLabelsBuf); |
|
// in case of logitboost and gentle adaboost each weak tree is a regression tree, |
|
// so we need to convert class labels to floating-point values |
|
double w0 = 1./n; |
|
double p[2] = { 1, 1 }; |
|
|
|
cvReleaseMat( &orig_response ); |
|
cvReleaseMat( &sum_response ); |
|
cvReleaseMat( &weak_eval ); |
|
cvReleaseMat( &subsample_mask ); |
|
cvReleaseMat( &weights ); |
|
|
|
orig_response = cvCreateMat( 1, n, CV_32S ); |
|
weak_eval = cvCreateMat( 1, n, CV_64F ); |
|
subsample_mask = cvCreateMat( 1, n, CV_8U ); |
|
weights = cvCreateMat( 1, n, CV_64F ); |
|
subtree_weights = cvCreateMat( 1, n + 2, CV_64F ); |
|
|
|
if (data->is_buf_16u) |
|
{ |
|
unsigned short* labels = (unsigned short*)(buf->data.s + data->data_root->buf_idx*buf->cols + |
|
data->data_root->offset + (data->work_var_count-1)*data->sample_count); |
|
for( int i = 0; i < n; i++ ) |
|
{ |
|
// save original categorical responses {0,1}, convert them to {-1,1} |
|
orig_response->data.i[i] = classLabels[i]*2 - 1; |
|
// make all the samples active at start. |
|
// later, in trim_weights() deactivate/reactive again some, if need |
|
subsample_mask->data.ptr[i] = (uchar)1; |
|
// make all the initial weights the same. |
|
weights->data.db[i] = w0*p[classLabels[i]]; |
|
// set the labels to find (from within weak tree learning proc) |
|
// the particular sample weight, and where to store the response. |
|
labels[i] = (unsigned short)i; |
|
} |
|
} |
|
else |
|
{ |
|
int* labels = buf->data.i + data->data_root->buf_idx*buf->cols + |
|
data->data_root->offset + (data->work_var_count-1)*data->sample_count; |
|
|
|
for( int i = 0; i < n; i++ ) |
|
{ |
|
// save original categorical responses {0,1}, convert them to {-1,1} |
|
orig_response->data.i[i] = classLabels[i]*2 - 1; |
|
subsample_mask->data.ptr[i] = (uchar)1; |
|
weights->data.db[i] = w0*p[classLabels[i]]; |
|
labels[i] = i; |
|
} |
|
} |
|
|
|
if( params.boost_type == LOGIT ) |
|
{ |
|
sum_response = cvCreateMat( 1, n, CV_64F ); |
|
|
|
for( int i = 0; i < n; i++ ) |
|
{ |
|
sum_response->data.db[i] = 0; |
|
fdata[sampleIdx[i]*step] = orig_response->data.i[i] > 0 ? 2.f : -2.f; |
|
} |
|
|
|
// in case of logitboost each weak tree is a regression tree. |
|
// the target function values are recalculated for each of the trees |
|
data->is_classifier = false; |
|
} |
|
else if( params.boost_type == GENTLE ) |
|
{ |
|
for( int i = 0; i < n; i++ ) |
|
fdata[sampleIdx[i]*step] = (float)orig_response->data.i[i]; |
|
|
|
data->is_classifier = false; |
|
} |
|
} |
|
else |
|
{ |
|
// at this moment, for all the samples that participated in the training of the most |
|
// recent weak classifier we know the responses. For other samples we need to compute them |
|
if( have_subsample ) |
|
{ |
|
// invert the subsample mask |
|
cvXorS( subsample_mask, cvScalar(1.), subsample_mask ); |
|
|
|
// run tree through all the non-processed samples |
|
for( int i = 0; i < n; i++ ) |
|
if( subsample_mask->data.ptr[i] ) |
|
{ |
|
weak_eval->data.db[i] = ((CvCascadeBoostTree*)tree)->predict( i )->value; |
|
} |
|
} |
|
|
|
// now update weights and other parameters for each type of boosting |
|
if( params.boost_type == DISCRETE ) |
|
{ |
|
// Discrete AdaBoost: |
|
// weak_eval[i] (=f(x_i)) is in {-1,1} |
|
// err = sum(w_i*(f(x_i) != y_i))/sum(w_i) |
|
// C = log((1-err)/err) |
|
// w_i *= exp(C*(f(x_i) != y_i)) |
|
|
|
double C, err = 0.; |
|
double scale[] = { 1., 0. }; |
|
|
|
for( int i = 0; i < n; i++ ) |
|
{ |
|
double w = weights->data.db[i]; |
|
sumW += w; |
|
err += w*(weak_eval->data.db[i] != orig_response->data.i[i]); |
|
} |
|
|
|
if( sumW != 0 ) |
|
err /= sumW; |
|
C = err = -logRatio( err ); |
|
scale[1] = exp(err); |
|
|
|
sumW = 0; |
|
for( int i = 0; i < n; i++ ) |
|
{ |
|
double w = weights->data.db[i]* |
|
scale[weak_eval->data.db[i] != orig_response->data.i[i]]; |
|
sumW += w; |
|
weights->data.db[i] = w; |
|
} |
|
|
|
tree->scale( C ); |
|
} |
|
else if( params.boost_type == REAL ) |
|
{ |
|
// Real AdaBoost: |
|
// weak_eval[i] = f(x_i) = 0.5*log(p(x_i)/(1-p(x_i))), p(x_i)=P(y=1|x_i) |
|
// w_i *= exp(-y_i*f(x_i)) |
|
|
|
for( int i = 0; i < n; i++ ) |
|
weak_eval->data.db[i] *= -orig_response->data.i[i]; |
|
|
|
cvExp( weak_eval, weak_eval ); |
|
|
|
for( int i = 0; i < n; i++ ) |
|
{ |
|
double w = weights->data.db[i]*weak_eval->data.db[i]; |
|
sumW += w; |
|
weights->data.db[i] = w; |
|
} |
|
} |
|
else if( params.boost_type == LOGIT ) |
|
{ |
|
// LogitBoost: |
|
// weak_eval[i] = f(x_i) in [-z_max,z_max] |
|
// sum_response = F(x_i). |
|
// F(x_i) += 0.5*f(x_i) |
|
// p(x_i) = exp(F(x_i))/(exp(F(x_i)) + exp(-F(x_i))=1/(1+exp(-2*F(x_i))) |
|
// reuse weak_eval: weak_eval[i] <- p(x_i) |
|
// w_i = p(x_i)*1(1 - p(x_i)) |
|
// z_i = ((y_i+1)/2 - p(x_i))/(p(x_i)*(1 - p(x_i))) |
|
// store z_i to the data->data_root as the new target responses |
|
|
|
const double lbWeightThresh = FLT_EPSILON; |
|
const double lbZMax = 10.; |
|
|
|
for( int i = 0; i < n; i++ ) |
|
{ |
|
double s = sum_response->data.db[i] + 0.5*weak_eval->data.db[i]; |
|
sum_response->data.db[i] = s; |
|
weak_eval->data.db[i] = -2*s; |
|
} |
|
|
|
cvExp( weak_eval, weak_eval ); |
|
|
|
for( int i = 0; i < n; i++ ) |
|
{ |
|
double p = 1./(1. + weak_eval->data.db[i]); |
|
double w = p*(1 - p), z; |
|
w = MAX( w, lbWeightThresh ); |
|
weights->data.db[i] = w; |
|
sumW += w; |
|
if( orig_response->data.i[i] > 0 ) |
|
{ |
|
z = 1./p; |
|
fdata[sampleIdx[i]*step] = (float)min(z, lbZMax); |
|
} |
|
else |
|
{ |
|
z = 1./(1-p); |
|
fdata[sampleIdx[i]*step] = (float)-min(z, lbZMax); |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
// Gentle AdaBoost: |
|
// weak_eval[i] = f(x_i) in [-1,1] |
|
// w_i *= exp(-y_i*f(x_i)) |
|
assert( params.boost_type == GENTLE ); |
|
|
|
for( int i = 0; i < n; i++ ) |
|
weak_eval->data.db[i] *= -orig_response->data.i[i]; |
|
|
|
cvExp( weak_eval, weak_eval ); |
|
|
|
for( int i = 0; i < n; i++ ) |
|
{ |
|
double w = weights->data.db[i] * weak_eval->data.db[i]; |
|
weights->data.db[i] = w; |
|
sumW += w; |
|
} |
|
} |
|
} |
|
|
|
// renormalize weights |
|
if( sumW > FLT_EPSILON ) |
|
{ |
|
sumW = 1./sumW; |
|
for( int i = 0; i < n; ++i ) |
|
weights->data.db[i] *= sumW; |
|
} |
|
} |
|
|
|
bool CvCascadeBoost::isErrDesired() |
|
{ |
|
int sCount = data->sample_count, |
|
numPos = 0, numNeg = 0, numFalse = 0, numPosTrue = 0; |
|
vector<float> eval(sCount); |
|
|
|
for( int i = 0; i < sCount; i++ ) |
|
if( ((CvCascadeBoostTrainData*)data)->featureEvaluator->getCls( i ) == 1.0F ) |
|
eval[numPos++] = predict( i, true ); |
|
icvSortFlt( &eval[0], numPos, 0 ); |
|
int thresholdIdx = (int)((1.0F - minHitRate) * numPos); |
|
threshold = eval[ thresholdIdx ]; |
|
numPosTrue = numPos - thresholdIdx; |
|
for( int i = thresholdIdx - 1; i >= 0; i--) |
|
if ( abs( eval[i] - threshold) < FLT_EPSILON ) |
|
numPosTrue++; |
|
float hitRate = ((float) numPosTrue) / ((float) numPos); |
|
|
|
for( int i = 0; i < sCount; i++ ) |
|
{ |
|
if( ((CvCascadeBoostTrainData*)data)->featureEvaluator->getCls( i ) == 0.0F ) |
|
{ |
|
numNeg++; |
|
if( predict( i ) ) |
|
numFalse++; |
|
} |
|
} |
|
float falseAlarm = ((float) numFalse) / ((float) numNeg); |
|
|
|
cout << "|"; cout.width(4); cout << right << weak->total; |
|
cout << "|"; cout.width(9); cout << right << hitRate; |
|
cout << "|"; cout.width(9); cout << right << falseAlarm; |
|
cout << "|" << endl; |
|
cout << "+----+---------+---------+" << endl; |
|
|
|
return falseAlarm <= maxFalseAlarm; |
|
} |
|
|
|
void CvCascadeBoost::write( FileStorage &fs, const Mat& featureMap ) const |
|
{ |
|
// char cmnt[30]; |
|
CvCascadeBoostTree* weakTree; |
|
fs << CC_WEAK_COUNT << weak->total; |
|
fs << CC_STAGE_THRESHOLD << threshold; |
|
fs << CC_WEAK_CLASSIFIERS << "["; |
|
for( int wi = 0; wi < weak->total; wi++) |
|
{ |
|
/*sprintf( cmnt, "tree %i", wi ); |
|
cvWriteComment( fs, cmnt, 0 );*/ |
|
weakTree = *((CvCascadeBoostTree**) cvGetSeqElem( weak, wi )); |
|
weakTree->write( fs, featureMap ); |
|
} |
|
fs << "]"; |
|
} |
|
|
|
bool CvCascadeBoost::read( const FileNode &node, |
|
const CvFeatureEvaluator* _featureEvaluator, |
|
const CvCascadeBoostParams& _params ) |
|
{ |
|
CvMemStorage* storage; |
|
clear(); |
|
data = new CvCascadeBoostTrainData( _featureEvaluator, _params ); |
|
set_params( _params ); |
|
|
|
node[CC_STAGE_THRESHOLD] >> threshold; |
|
FileNode rnode = node[CC_WEAK_CLASSIFIERS]; |
|
|
|
storage = cvCreateMemStorage(); |
|
weak = cvCreateSeq( 0, sizeof(CvSeq), sizeof(CvBoostTree*), storage ); |
|
for( FileNodeIterator it = rnode.begin(); it != rnode.end(); it++ ) |
|
{ |
|
CvCascadeBoostTree* tree = new CvCascadeBoostTree(); |
|
tree->read( *it, this, data ); |
|
cvSeqPush( weak, &tree ); |
|
} |
|
return true; |
|
} |
|
|
|
void CvCascadeBoost::markUsedFeaturesInMap( Mat& featureMap ) |
|
{ |
|
for( int wi = 0; wi < weak->total; wi++ ) |
|
{ |
|
CvCascadeBoostTree* weakTree = *((CvCascadeBoostTree**) cvGetSeqElem( weak, wi )); |
|
weakTree->markFeaturesInMap( featureMap ); |
|
} |
|
}
|
|
|