mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
541 lines
18 KiB
541 lines
18 KiB
/* |
|
* jcparam.c |
|
* |
|
* This file was part of the Independent JPEG Group's software: |
|
* Copyright (C) 1991-1998, Thomas G. Lane. |
|
* Modified 2003-2008 by Guido Vollbeding. |
|
* libjpeg-turbo Modifications: |
|
* Copyright (C) 2009-2011, 2018, D. R. Commander. |
|
* For conditions of distribution and use, see the accompanying README.ijg |
|
* file. |
|
* |
|
* This file contains optional default-setting code for the JPEG compressor. |
|
* Applications do not have to use this file, but those that don't use it |
|
* must know a lot more about the innards of the JPEG code. |
|
*/ |
|
|
|
#define JPEG_INTERNALS |
|
#include "jinclude.h" |
|
#include "jpeglib.h" |
|
#include "jstdhuff.c" |
|
|
|
|
|
/* |
|
* Quantization table setup routines |
|
*/ |
|
|
|
GLOBAL(void) |
|
jpeg_add_quant_table(j_compress_ptr cinfo, int which_tbl, |
|
const unsigned int *basic_table, int scale_factor, |
|
boolean force_baseline) |
|
/* Define a quantization table equal to the basic_table times |
|
* a scale factor (given as a percentage). |
|
* If force_baseline is TRUE, the computed quantization table entries |
|
* are limited to 1..255 for JPEG baseline compatibility. |
|
*/ |
|
{ |
|
JQUANT_TBL **qtblptr; |
|
int i; |
|
long temp; |
|
|
|
/* Safety check to ensure start_compress not called yet. */ |
|
if (cinfo->global_state != CSTATE_START) |
|
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); |
|
|
|
if (which_tbl < 0 || which_tbl >= NUM_QUANT_TBLS) |
|
ERREXIT1(cinfo, JERR_DQT_INDEX, which_tbl); |
|
|
|
qtblptr = &cinfo->quant_tbl_ptrs[which_tbl]; |
|
|
|
if (*qtblptr == NULL) |
|
*qtblptr = jpeg_alloc_quant_table((j_common_ptr)cinfo); |
|
|
|
for (i = 0; i < DCTSIZE2; i++) { |
|
temp = ((long)basic_table[i] * scale_factor + 50L) / 100L; |
|
/* limit the values to the valid range */ |
|
if (temp <= 0L) temp = 1L; |
|
if (temp > 32767L) temp = 32767L; /* max quantizer needed for 12 bits */ |
|
if (force_baseline && temp > 255L) |
|
temp = 255L; /* limit to baseline range if requested */ |
|
(*qtblptr)->quantval[i] = (UINT16)temp; |
|
} |
|
|
|
/* Initialize sent_table FALSE so table will be written to JPEG file. */ |
|
(*qtblptr)->sent_table = FALSE; |
|
} |
|
|
|
|
|
/* These are the sample quantization tables given in Annex K (Clause K.1) of |
|
* Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994. |
|
* The spec says that the values given produce "good" quality, and |
|
* when divided by 2, "very good" quality. |
|
*/ |
|
static const unsigned int std_luminance_quant_tbl[DCTSIZE2] = { |
|
16, 11, 10, 16, 24, 40, 51, 61, |
|
12, 12, 14, 19, 26, 58, 60, 55, |
|
14, 13, 16, 24, 40, 57, 69, 56, |
|
14, 17, 22, 29, 51, 87, 80, 62, |
|
18, 22, 37, 56, 68, 109, 103, 77, |
|
24, 35, 55, 64, 81, 104, 113, 92, |
|
49, 64, 78, 87, 103, 121, 120, 101, |
|
72, 92, 95, 98, 112, 100, 103, 99 |
|
}; |
|
static const unsigned int std_chrominance_quant_tbl[DCTSIZE2] = { |
|
17, 18, 24, 47, 99, 99, 99, 99, |
|
18, 21, 26, 66, 99, 99, 99, 99, |
|
24, 26, 56, 99, 99, 99, 99, 99, |
|
47, 66, 99, 99, 99, 99, 99, 99, |
|
99, 99, 99, 99, 99, 99, 99, 99, |
|
99, 99, 99, 99, 99, 99, 99, 99, |
|
99, 99, 99, 99, 99, 99, 99, 99, |
|
99, 99, 99, 99, 99, 99, 99, 99 |
|
}; |
|
|
|
|
|
#if JPEG_LIB_VERSION >= 70 |
|
GLOBAL(void) |
|
jpeg_default_qtables(j_compress_ptr cinfo, boolean force_baseline) |
|
/* Set or change the 'quality' (quantization) setting, using default tables |
|
* and straight percentage-scaling quality scales. |
|
* This entry point allows different scalings for luminance and chrominance. |
|
*/ |
|
{ |
|
/* Set up two quantization tables using the specified scaling */ |
|
jpeg_add_quant_table(cinfo, 0, std_luminance_quant_tbl, |
|
cinfo->q_scale_factor[0], force_baseline); |
|
jpeg_add_quant_table(cinfo, 1, std_chrominance_quant_tbl, |
|
cinfo->q_scale_factor[1], force_baseline); |
|
} |
|
#endif |
|
|
|
|
|
GLOBAL(void) |
|
jpeg_set_linear_quality(j_compress_ptr cinfo, int scale_factor, |
|
boolean force_baseline) |
|
/* Set or change the 'quality' (quantization) setting, using default tables |
|
* and a straight percentage-scaling quality scale. In most cases it's better |
|
* to use jpeg_set_quality (below); this entry point is provided for |
|
* applications that insist on a linear percentage scaling. |
|
*/ |
|
{ |
|
/* Set up two quantization tables using the specified scaling */ |
|
jpeg_add_quant_table(cinfo, 0, std_luminance_quant_tbl, |
|
scale_factor, force_baseline); |
|
jpeg_add_quant_table(cinfo, 1, std_chrominance_quant_tbl, |
|
scale_factor, force_baseline); |
|
} |
|
|
|
|
|
GLOBAL(int) |
|
jpeg_quality_scaling(int quality) |
|
/* Convert a user-specified quality rating to a percentage scaling factor |
|
* for an underlying quantization table, using our recommended scaling curve. |
|
* The input 'quality' factor should be 0 (terrible) to 100 (very good). |
|
*/ |
|
{ |
|
/* Safety limit on quality factor. Convert 0 to 1 to avoid zero divide. */ |
|
if (quality <= 0) quality = 1; |
|
if (quality > 100) quality = 100; |
|
|
|
/* The basic table is used as-is (scaling 100) for a quality of 50. |
|
* Qualities 50..100 are converted to scaling percentage 200 - 2*Q; |
|
* note that at Q=100 the scaling is 0, which will cause jpeg_add_quant_table |
|
* to make all the table entries 1 (hence, minimum quantization loss). |
|
* Qualities 1..50 are converted to scaling percentage 5000/Q. |
|
*/ |
|
if (quality < 50) |
|
quality = 5000 / quality; |
|
else |
|
quality = 200 - quality * 2; |
|
|
|
return quality; |
|
} |
|
|
|
|
|
GLOBAL(void) |
|
jpeg_set_quality(j_compress_ptr cinfo, int quality, boolean force_baseline) |
|
/* Set or change the 'quality' (quantization) setting, using default tables. |
|
* This is the standard quality-adjusting entry point for typical user |
|
* interfaces; only those who want detailed control over quantization tables |
|
* would use the preceding three routines directly. |
|
*/ |
|
{ |
|
/* Convert user 0-100 rating to percentage scaling */ |
|
quality = jpeg_quality_scaling(quality); |
|
|
|
/* Set up standard quality tables */ |
|
jpeg_set_linear_quality(cinfo, quality, force_baseline); |
|
} |
|
|
|
|
|
/* |
|
* Default parameter setup for compression. |
|
* |
|
* Applications that don't choose to use this routine must do their |
|
* own setup of all these parameters. Alternately, you can call this |
|
* to establish defaults and then alter parameters selectively. This |
|
* is the recommended approach since, if we add any new parameters, |
|
* your code will still work (they'll be set to reasonable defaults). |
|
*/ |
|
|
|
GLOBAL(void) |
|
jpeg_set_defaults(j_compress_ptr cinfo) |
|
{ |
|
int i; |
|
|
|
/* Safety check to ensure start_compress not called yet. */ |
|
if (cinfo->global_state != CSTATE_START) |
|
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); |
|
|
|
/* Allocate comp_info array large enough for maximum component count. |
|
* Array is made permanent in case application wants to compress |
|
* multiple images at same param settings. |
|
*/ |
|
if (cinfo->comp_info == NULL) |
|
cinfo->comp_info = (jpeg_component_info *) |
|
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_PERMANENT, |
|
MAX_COMPONENTS * sizeof(jpeg_component_info)); |
|
|
|
/* Initialize everything not dependent on the color space */ |
|
|
|
#if JPEG_LIB_VERSION >= 70 |
|
cinfo->scale_num = 1; /* 1:1 scaling */ |
|
cinfo->scale_denom = 1; |
|
#endif |
|
cinfo->data_precision = BITS_IN_JSAMPLE; |
|
/* Set up two quantization tables using default quality of 75 */ |
|
jpeg_set_quality(cinfo, 75, TRUE); |
|
/* Set up two Huffman tables */ |
|
std_huff_tables((j_common_ptr)cinfo); |
|
|
|
/* Initialize default arithmetic coding conditioning */ |
|
for (i = 0; i < NUM_ARITH_TBLS; i++) { |
|
cinfo->arith_dc_L[i] = 0; |
|
cinfo->arith_dc_U[i] = 1; |
|
cinfo->arith_ac_K[i] = 5; |
|
} |
|
|
|
/* Default is no multiple-scan output */ |
|
cinfo->scan_info = NULL; |
|
cinfo->num_scans = 0; |
|
|
|
/* Expect normal source image, not raw downsampled data */ |
|
cinfo->raw_data_in = FALSE; |
|
|
|
/* Use Huffman coding, not arithmetic coding, by default */ |
|
cinfo->arith_code = FALSE; |
|
|
|
/* By default, don't do extra passes to optimize entropy coding */ |
|
cinfo->optimize_coding = FALSE; |
|
/* The standard Huffman tables are only valid for 8-bit data precision. |
|
* If the precision is higher, force optimization on so that usable |
|
* tables will be computed. This test can be removed if default tables |
|
* are supplied that are valid for the desired precision. |
|
*/ |
|
if (cinfo->data_precision > 8) |
|
cinfo->optimize_coding = TRUE; |
|
|
|
/* By default, use the simpler non-cosited sampling alignment */ |
|
cinfo->CCIR601_sampling = FALSE; |
|
|
|
#if JPEG_LIB_VERSION >= 70 |
|
/* By default, apply fancy downsampling */ |
|
cinfo->do_fancy_downsampling = TRUE; |
|
#endif |
|
|
|
/* No input smoothing */ |
|
cinfo->smoothing_factor = 0; |
|
|
|
/* DCT algorithm preference */ |
|
cinfo->dct_method = JDCT_DEFAULT; |
|
|
|
/* No restart markers */ |
|
cinfo->restart_interval = 0; |
|
cinfo->restart_in_rows = 0; |
|
|
|
/* Fill in default JFIF marker parameters. Note that whether the marker |
|
* will actually be written is determined by jpeg_set_colorspace. |
|
* |
|
* By default, the library emits JFIF version code 1.01. |
|
* An application that wants to emit JFIF 1.02 extension markers should set |
|
* JFIF_minor_version to 2. We could probably get away with just defaulting |
|
* to 1.02, but there may still be some decoders in use that will complain |
|
* about that; saying 1.01 should minimize compatibility problems. |
|
*/ |
|
cinfo->JFIF_major_version = 1; /* Default JFIF version = 1.01 */ |
|
cinfo->JFIF_minor_version = 1; |
|
cinfo->density_unit = 0; /* Pixel size is unknown by default */ |
|
cinfo->X_density = 1; /* Pixel aspect ratio is square by default */ |
|
cinfo->Y_density = 1; |
|
|
|
/* Choose JPEG colorspace based on input space, set defaults accordingly */ |
|
|
|
jpeg_default_colorspace(cinfo); |
|
} |
|
|
|
|
|
/* |
|
* Select an appropriate JPEG colorspace for in_color_space. |
|
*/ |
|
|
|
GLOBAL(void) |
|
jpeg_default_colorspace(j_compress_ptr cinfo) |
|
{ |
|
switch (cinfo->in_color_space) { |
|
case JCS_GRAYSCALE: |
|
jpeg_set_colorspace(cinfo, JCS_GRAYSCALE); |
|
break; |
|
case JCS_RGB: |
|
case JCS_EXT_RGB: |
|
case JCS_EXT_RGBX: |
|
case JCS_EXT_BGR: |
|
case JCS_EXT_BGRX: |
|
case JCS_EXT_XBGR: |
|
case JCS_EXT_XRGB: |
|
case JCS_EXT_RGBA: |
|
case JCS_EXT_BGRA: |
|
case JCS_EXT_ABGR: |
|
case JCS_EXT_ARGB: |
|
jpeg_set_colorspace(cinfo, JCS_YCbCr); |
|
break; |
|
case JCS_YCbCr: |
|
jpeg_set_colorspace(cinfo, JCS_YCbCr); |
|
break; |
|
case JCS_CMYK: |
|
jpeg_set_colorspace(cinfo, JCS_CMYK); /* By default, no translation */ |
|
break; |
|
case JCS_YCCK: |
|
jpeg_set_colorspace(cinfo, JCS_YCCK); |
|
break; |
|
case JCS_UNKNOWN: |
|
jpeg_set_colorspace(cinfo, JCS_UNKNOWN); |
|
break; |
|
default: |
|
ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE); |
|
} |
|
} |
|
|
|
|
|
/* |
|
* Set the JPEG colorspace, and choose colorspace-dependent default values. |
|
*/ |
|
|
|
GLOBAL(void) |
|
jpeg_set_colorspace(j_compress_ptr cinfo, J_COLOR_SPACE colorspace) |
|
{ |
|
jpeg_component_info *compptr; |
|
int ci; |
|
|
|
#define SET_COMP(index, id, hsamp, vsamp, quant, dctbl, actbl) \ |
|
(compptr = &cinfo->comp_info[index], \ |
|
compptr->component_id = (id), \ |
|
compptr->h_samp_factor = (hsamp), \ |
|
compptr->v_samp_factor = (vsamp), \ |
|
compptr->quant_tbl_no = (quant), \ |
|
compptr->dc_tbl_no = (dctbl), \ |
|
compptr->ac_tbl_no = (actbl) ) |
|
|
|
/* Safety check to ensure start_compress not called yet. */ |
|
if (cinfo->global_state != CSTATE_START) |
|
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); |
|
|
|
/* For all colorspaces, we use Q and Huff tables 0 for luminance components, |
|
* tables 1 for chrominance components. |
|
*/ |
|
|
|
cinfo->jpeg_color_space = colorspace; |
|
|
|
cinfo->write_JFIF_header = FALSE; /* No marker for non-JFIF colorspaces */ |
|
cinfo->write_Adobe_marker = FALSE; /* write no Adobe marker by default */ |
|
|
|
switch (colorspace) { |
|
case JCS_GRAYSCALE: |
|
cinfo->write_JFIF_header = TRUE; /* Write a JFIF marker */ |
|
cinfo->num_components = 1; |
|
/* JFIF specifies component ID 1 */ |
|
SET_COMP(0, 1, 1, 1, 0, 0, 0); |
|
break; |
|
case JCS_RGB: |
|
cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag RGB */ |
|
cinfo->num_components = 3; |
|
SET_COMP(0, 0x52 /* 'R' */, 1, 1, 0, 0, 0); |
|
SET_COMP(1, 0x47 /* 'G' */, 1, 1, 0, 0, 0); |
|
SET_COMP(2, 0x42 /* 'B' */, 1, 1, 0, 0, 0); |
|
break; |
|
case JCS_YCbCr: |
|
cinfo->write_JFIF_header = TRUE; /* Write a JFIF marker */ |
|
cinfo->num_components = 3; |
|
/* JFIF specifies component IDs 1,2,3 */ |
|
/* We default to 2x2 subsamples of chrominance */ |
|
SET_COMP(0, 1, 2, 2, 0, 0, 0); |
|
SET_COMP(1, 2, 1, 1, 1, 1, 1); |
|
SET_COMP(2, 3, 1, 1, 1, 1, 1); |
|
break; |
|
case JCS_CMYK: |
|
cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag CMYK */ |
|
cinfo->num_components = 4; |
|
SET_COMP(0, 0x43 /* 'C' */, 1, 1, 0, 0, 0); |
|
SET_COMP(1, 0x4D /* 'M' */, 1, 1, 0, 0, 0); |
|
SET_COMP(2, 0x59 /* 'Y' */, 1, 1, 0, 0, 0); |
|
SET_COMP(3, 0x4B /* 'K' */, 1, 1, 0, 0, 0); |
|
break; |
|
case JCS_YCCK: |
|
cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag YCCK */ |
|
cinfo->num_components = 4; |
|
SET_COMP(0, 1, 2, 2, 0, 0, 0); |
|
SET_COMP(1, 2, 1, 1, 1, 1, 1); |
|
SET_COMP(2, 3, 1, 1, 1, 1, 1); |
|
SET_COMP(3, 4, 2, 2, 0, 0, 0); |
|
break; |
|
case JCS_UNKNOWN: |
|
cinfo->num_components = cinfo->input_components; |
|
if (cinfo->num_components < 1 || cinfo->num_components > MAX_COMPONENTS) |
|
ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components, |
|
MAX_COMPONENTS); |
|
for (ci = 0; ci < cinfo->num_components; ci++) { |
|
SET_COMP(ci, ci, 1, 1, 0, 0, 0); |
|
} |
|
break; |
|
default: |
|
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); |
|
} |
|
} |
|
|
|
|
|
#ifdef C_PROGRESSIVE_SUPPORTED |
|
|
|
LOCAL(jpeg_scan_info *) |
|
fill_a_scan(jpeg_scan_info *scanptr, int ci, int Ss, int Se, int Ah, int Al) |
|
/* Support routine: generate one scan for specified component */ |
|
{ |
|
scanptr->comps_in_scan = 1; |
|
scanptr->component_index[0] = ci; |
|
scanptr->Ss = Ss; |
|
scanptr->Se = Se; |
|
scanptr->Ah = Ah; |
|
scanptr->Al = Al; |
|
scanptr++; |
|
return scanptr; |
|
} |
|
|
|
LOCAL(jpeg_scan_info *) |
|
fill_scans(jpeg_scan_info *scanptr, int ncomps, int Ss, int Se, int Ah, int Al) |
|
/* Support routine: generate one scan for each component */ |
|
{ |
|
int ci; |
|
|
|
for (ci = 0; ci < ncomps; ci++) { |
|
scanptr->comps_in_scan = 1; |
|
scanptr->component_index[0] = ci; |
|
scanptr->Ss = Ss; |
|
scanptr->Se = Se; |
|
scanptr->Ah = Ah; |
|
scanptr->Al = Al; |
|
scanptr++; |
|
} |
|
return scanptr; |
|
} |
|
|
|
LOCAL(jpeg_scan_info *) |
|
fill_dc_scans(jpeg_scan_info *scanptr, int ncomps, int Ah, int Al) |
|
/* Support routine: generate interleaved DC scan if possible, else N scans */ |
|
{ |
|
int ci; |
|
|
|
if (ncomps <= MAX_COMPS_IN_SCAN) { |
|
/* Single interleaved DC scan */ |
|
scanptr->comps_in_scan = ncomps; |
|
for (ci = 0; ci < ncomps; ci++) |
|
scanptr->component_index[ci] = ci; |
|
scanptr->Ss = scanptr->Se = 0; |
|
scanptr->Ah = Ah; |
|
scanptr->Al = Al; |
|
scanptr++; |
|
} else { |
|
/* Noninterleaved DC scan for each component */ |
|
scanptr = fill_scans(scanptr, ncomps, 0, 0, Ah, Al); |
|
} |
|
return scanptr; |
|
} |
|
|
|
|
|
/* |
|
* Create a recommended progressive-JPEG script. |
|
* cinfo->num_components and cinfo->jpeg_color_space must be correct. |
|
*/ |
|
|
|
GLOBAL(void) |
|
jpeg_simple_progression(j_compress_ptr cinfo) |
|
{ |
|
int ncomps = cinfo->num_components; |
|
int nscans; |
|
jpeg_scan_info *scanptr; |
|
|
|
/* Safety check to ensure start_compress not called yet. */ |
|
if (cinfo->global_state != CSTATE_START) |
|
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); |
|
|
|
/* Figure space needed for script. Calculation must match code below! */ |
|
if (ncomps == 3 && cinfo->jpeg_color_space == JCS_YCbCr) { |
|
/* Custom script for YCbCr color images. */ |
|
nscans = 10; |
|
} else { |
|
/* All-purpose script for other color spaces. */ |
|
if (ncomps > MAX_COMPS_IN_SCAN) |
|
nscans = 6 * ncomps; /* 2 DC + 4 AC scans per component */ |
|
else |
|
nscans = 2 + 4 * ncomps; /* 2 DC scans; 4 AC scans per component */ |
|
} |
|
|
|
/* Allocate space for script. |
|
* We need to put it in the permanent pool in case the application performs |
|
* multiple compressions without changing the settings. To avoid a memory |
|
* leak if jpeg_simple_progression is called repeatedly for the same JPEG |
|
* object, we try to re-use previously allocated space, and we allocate |
|
* enough space to handle YCbCr even if initially asked for grayscale. |
|
*/ |
|
if (cinfo->script_space == NULL || cinfo->script_space_size < nscans) { |
|
cinfo->script_space_size = MAX(nscans, 10); |
|
cinfo->script_space = (jpeg_scan_info *) |
|
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_PERMANENT, |
|
cinfo->script_space_size * sizeof(jpeg_scan_info)); |
|
} |
|
scanptr = cinfo->script_space; |
|
cinfo->scan_info = scanptr; |
|
cinfo->num_scans = nscans; |
|
|
|
if (ncomps == 3 && cinfo->jpeg_color_space == JCS_YCbCr) { |
|
/* Custom script for YCbCr color images. */ |
|
/* Initial DC scan */ |
|
scanptr = fill_dc_scans(scanptr, ncomps, 0, 1); |
|
/* Initial AC scan: get some luma data out in a hurry */ |
|
scanptr = fill_a_scan(scanptr, 0, 1, 5, 0, 2); |
|
/* Chroma data is too small to be worth expending many scans on */ |
|
scanptr = fill_a_scan(scanptr, 2, 1, 63, 0, 1); |
|
scanptr = fill_a_scan(scanptr, 1, 1, 63, 0, 1); |
|
/* Complete spectral selection for luma AC */ |
|
scanptr = fill_a_scan(scanptr, 0, 6, 63, 0, 2); |
|
/* Refine next bit of luma AC */ |
|
scanptr = fill_a_scan(scanptr, 0, 1, 63, 2, 1); |
|
/* Finish DC successive approximation */ |
|
scanptr = fill_dc_scans(scanptr, ncomps, 1, 0); |
|
/* Finish AC successive approximation */ |
|
scanptr = fill_a_scan(scanptr, 2, 1, 63, 1, 0); |
|
scanptr = fill_a_scan(scanptr, 1, 1, 63, 1, 0); |
|
/* Luma bottom bit comes last since it's usually largest scan */ |
|
scanptr = fill_a_scan(scanptr, 0, 1, 63, 1, 0); |
|
} else { |
|
/* All-purpose script for other color spaces. */ |
|
/* Successive approximation first pass */ |
|
scanptr = fill_dc_scans(scanptr, ncomps, 0, 1); |
|
scanptr = fill_scans(scanptr, ncomps, 1, 5, 0, 2); |
|
scanptr = fill_scans(scanptr, ncomps, 6, 63, 0, 2); |
|
/* Successive approximation second pass */ |
|
scanptr = fill_scans(scanptr, ncomps, 1, 63, 2, 1); |
|
/* Successive approximation final pass */ |
|
scanptr = fill_dc_scans(scanptr, ncomps, 1, 0); |
|
scanptr = fill_scans(scanptr, ncomps, 1, 63, 1, 0); |
|
} |
|
} |
|
|
|
#endif /* C_PROGRESSIVE_SUPPORTED */
|
|
|