mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1096 lines
34 KiB
1096 lines
34 KiB
/* |
|
* jchuff.c |
|
* |
|
* This file was part of the Independent JPEG Group's software: |
|
* Copyright (C) 1991-1997, Thomas G. Lane. |
|
* libjpeg-turbo Modifications: |
|
* Copyright (C) 2009-2011, 2014-2016, 2018-2019, D. R. Commander. |
|
* Copyright (C) 2015, Matthieu Darbois. |
|
* For conditions of distribution and use, see the accompanying README.ijg |
|
* file. |
|
* |
|
* This file contains Huffman entropy encoding routines. |
|
* |
|
* Much of the complexity here has to do with supporting output suspension. |
|
* If the data destination module demands suspension, we want to be able to |
|
* back up to the start of the current MCU. To do this, we copy state |
|
* variables into local working storage, and update them back to the |
|
* permanent JPEG objects only upon successful completion of an MCU. |
|
* |
|
* NOTE: All referenced figures are from |
|
* Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994. |
|
*/ |
|
|
|
#define JPEG_INTERNALS |
|
#include "jinclude.h" |
|
#include "jpeglib.h" |
|
#include "jsimd.h" |
|
#include "jconfigint.h" |
|
#include <limits.h> |
|
|
|
/* |
|
* NOTE: If USE_CLZ_INTRINSIC is defined, then clz/bsr instructions will be |
|
* used for bit counting rather than the lookup table. This will reduce the |
|
* memory footprint by 64k, which is important for some mobile applications |
|
* that create many isolated instances of libjpeg-turbo (web browsers, for |
|
* instance.) This may improve performance on some mobile platforms as well. |
|
* This feature is enabled by default only on Arm processors, because some x86 |
|
* chips have a slow implementation of bsr, and the use of clz/bsr cannot be |
|
* shown to have a significant performance impact even on the x86 chips that |
|
* have a fast implementation of it. When building for Armv6, you can |
|
* explicitly disable the use of clz/bsr by adding -mthumb to the compiler |
|
* flags (this defines __thumb__). |
|
*/ |
|
|
|
/* NOTE: Both GCC and Clang define __GNUC__ */ |
|
#if defined(__GNUC__) && (defined(__arm__) || defined(__aarch64__)) |
|
#if !defined(__thumb__) || defined(__thumb2__) |
|
#define USE_CLZ_INTRINSIC |
|
#endif |
|
#endif |
|
|
|
#ifdef USE_CLZ_INTRINSIC |
|
#define JPEG_NBITS_NONZERO(x) (32 - __builtin_clz(x)) |
|
#define JPEG_NBITS(x) (x ? JPEG_NBITS_NONZERO(x) : 0) |
|
#else |
|
#include "jpeg_nbits_table.h" |
|
#define JPEG_NBITS(x) (jpeg_nbits_table[x]) |
|
#define JPEG_NBITS_NONZERO(x) JPEG_NBITS(x) |
|
#endif |
|
|
|
|
|
/* Expanded entropy encoder object for Huffman encoding. |
|
* |
|
* The savable_state subrecord contains fields that change within an MCU, |
|
* but must not be updated permanently until we complete the MCU. |
|
*/ |
|
|
|
typedef struct { |
|
size_t put_buffer; /* current bit-accumulation buffer */ |
|
int put_bits; /* # of bits now in it */ |
|
int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ |
|
} savable_state; |
|
|
|
/* This macro is to work around compilers with missing or broken |
|
* structure assignment. You'll need to fix this code if you have |
|
* such a compiler and you change MAX_COMPS_IN_SCAN. |
|
*/ |
|
|
|
#ifndef NO_STRUCT_ASSIGN |
|
#define ASSIGN_STATE(dest, src) ((dest) = (src)) |
|
#else |
|
#if MAX_COMPS_IN_SCAN == 4 |
|
#define ASSIGN_STATE(dest, src) \ |
|
((dest).put_buffer = (src).put_buffer, \ |
|
(dest).put_bits = (src).put_bits, \ |
|
(dest).last_dc_val[0] = (src).last_dc_val[0], \ |
|
(dest).last_dc_val[1] = (src).last_dc_val[1], \ |
|
(dest).last_dc_val[2] = (src).last_dc_val[2], \ |
|
(dest).last_dc_val[3] = (src).last_dc_val[3]) |
|
#endif |
|
#endif |
|
|
|
|
|
typedef struct { |
|
struct jpeg_entropy_encoder pub; /* public fields */ |
|
|
|
savable_state saved; /* Bit buffer & DC state at start of MCU */ |
|
|
|
/* These fields are NOT loaded into local working state. */ |
|
unsigned int restarts_to_go; /* MCUs left in this restart interval */ |
|
int next_restart_num; /* next restart number to write (0-7) */ |
|
|
|
/* Pointers to derived tables (these workspaces have image lifespan) */ |
|
c_derived_tbl *dc_derived_tbls[NUM_HUFF_TBLS]; |
|
c_derived_tbl *ac_derived_tbls[NUM_HUFF_TBLS]; |
|
|
|
#ifdef ENTROPY_OPT_SUPPORTED /* Statistics tables for optimization */ |
|
long *dc_count_ptrs[NUM_HUFF_TBLS]; |
|
long *ac_count_ptrs[NUM_HUFF_TBLS]; |
|
#endif |
|
|
|
int simd; |
|
} huff_entropy_encoder; |
|
|
|
typedef huff_entropy_encoder *huff_entropy_ptr; |
|
|
|
/* Working state while writing an MCU. |
|
* This struct contains all the fields that are needed by subroutines. |
|
*/ |
|
|
|
typedef struct { |
|
JOCTET *next_output_byte; /* => next byte to write in buffer */ |
|
size_t free_in_buffer; /* # of byte spaces remaining in buffer */ |
|
savable_state cur; /* Current bit buffer & DC state */ |
|
j_compress_ptr cinfo; /* dump_buffer needs access to this */ |
|
} working_state; |
|
|
|
|
|
/* Forward declarations */ |
|
METHODDEF(boolean) encode_mcu_huff(j_compress_ptr cinfo, JBLOCKROW *MCU_data); |
|
METHODDEF(void) finish_pass_huff(j_compress_ptr cinfo); |
|
#ifdef ENTROPY_OPT_SUPPORTED |
|
METHODDEF(boolean) encode_mcu_gather(j_compress_ptr cinfo, |
|
JBLOCKROW *MCU_data); |
|
METHODDEF(void) finish_pass_gather(j_compress_ptr cinfo); |
|
#endif |
|
|
|
|
|
/* |
|
* Initialize for a Huffman-compressed scan. |
|
* If gather_statistics is TRUE, we do not output anything during the scan, |
|
* just count the Huffman symbols used and generate Huffman code tables. |
|
*/ |
|
|
|
METHODDEF(void) |
|
start_pass_huff(j_compress_ptr cinfo, boolean gather_statistics) |
|
{ |
|
huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy; |
|
int ci, dctbl, actbl; |
|
jpeg_component_info *compptr; |
|
|
|
if (gather_statistics) { |
|
#ifdef ENTROPY_OPT_SUPPORTED |
|
entropy->pub.encode_mcu = encode_mcu_gather; |
|
entropy->pub.finish_pass = finish_pass_gather; |
|
#else |
|
ERREXIT(cinfo, JERR_NOT_COMPILED); |
|
#endif |
|
} else { |
|
entropy->pub.encode_mcu = encode_mcu_huff; |
|
entropy->pub.finish_pass = finish_pass_huff; |
|
} |
|
|
|
entropy->simd = jsimd_can_huff_encode_one_block(); |
|
|
|
for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
|
compptr = cinfo->cur_comp_info[ci]; |
|
dctbl = compptr->dc_tbl_no; |
|
actbl = compptr->ac_tbl_no; |
|
if (gather_statistics) { |
|
#ifdef ENTROPY_OPT_SUPPORTED |
|
/* Check for invalid table indexes */ |
|
/* (make_c_derived_tbl does this in the other path) */ |
|
if (dctbl < 0 || dctbl >= NUM_HUFF_TBLS) |
|
ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, dctbl); |
|
if (actbl < 0 || actbl >= NUM_HUFF_TBLS) |
|
ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, actbl); |
|
/* Allocate and zero the statistics tables */ |
|
/* Note that jpeg_gen_optimal_table expects 257 entries in each table! */ |
|
if (entropy->dc_count_ptrs[dctbl] == NULL) |
|
entropy->dc_count_ptrs[dctbl] = (long *) |
|
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, |
|
257 * sizeof(long)); |
|
MEMZERO(entropy->dc_count_ptrs[dctbl], 257 * sizeof(long)); |
|
if (entropy->ac_count_ptrs[actbl] == NULL) |
|
entropy->ac_count_ptrs[actbl] = (long *) |
|
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, |
|
257 * sizeof(long)); |
|
MEMZERO(entropy->ac_count_ptrs[actbl], 257 * sizeof(long)); |
|
#endif |
|
} else { |
|
/* Compute derived values for Huffman tables */ |
|
/* We may do this more than once for a table, but it's not expensive */ |
|
jpeg_make_c_derived_tbl(cinfo, TRUE, dctbl, |
|
&entropy->dc_derived_tbls[dctbl]); |
|
jpeg_make_c_derived_tbl(cinfo, FALSE, actbl, |
|
&entropy->ac_derived_tbls[actbl]); |
|
} |
|
/* Initialize DC predictions to 0 */ |
|
entropy->saved.last_dc_val[ci] = 0; |
|
} |
|
|
|
/* Initialize bit buffer to empty */ |
|
entropy->saved.put_buffer = 0; |
|
entropy->saved.put_bits = 0; |
|
|
|
/* Initialize restart stuff */ |
|
entropy->restarts_to_go = cinfo->restart_interval; |
|
entropy->next_restart_num = 0; |
|
} |
|
|
|
|
|
/* |
|
* Compute the derived values for a Huffman table. |
|
* This routine also performs some validation checks on the table. |
|
* |
|
* Note this is also used by jcphuff.c. |
|
*/ |
|
|
|
GLOBAL(void) |
|
jpeg_make_c_derived_tbl(j_compress_ptr cinfo, boolean isDC, int tblno, |
|
c_derived_tbl **pdtbl) |
|
{ |
|
JHUFF_TBL *htbl; |
|
c_derived_tbl *dtbl; |
|
int p, i, l, lastp, si, maxsymbol; |
|
char huffsize[257]; |
|
unsigned int huffcode[257]; |
|
unsigned int code; |
|
|
|
/* Note that huffsize[] and huffcode[] are filled in code-length order, |
|
* paralleling the order of the symbols themselves in htbl->huffval[]. |
|
*/ |
|
|
|
/* Find the input Huffman table */ |
|
if (tblno < 0 || tblno >= NUM_HUFF_TBLS) |
|
ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); |
|
htbl = |
|
isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno]; |
|
if (htbl == NULL) |
|
ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); |
|
|
|
/* Allocate a workspace if we haven't already done so. */ |
|
if (*pdtbl == NULL) |
|
*pdtbl = (c_derived_tbl *) |
|
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, |
|
sizeof(c_derived_tbl)); |
|
dtbl = *pdtbl; |
|
|
|
/* Figure C.1: make table of Huffman code length for each symbol */ |
|
|
|
p = 0; |
|
for (l = 1; l <= 16; l++) { |
|
i = (int)htbl->bits[l]; |
|
if (i < 0 || p + i > 256) /* protect against table overrun */ |
|
ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); |
|
while (i--) |
|
huffsize[p++] = (char)l; |
|
} |
|
huffsize[p] = 0; |
|
lastp = p; |
|
|
|
/* Figure C.2: generate the codes themselves */ |
|
/* We also validate that the counts represent a legal Huffman code tree. */ |
|
|
|
code = 0; |
|
si = huffsize[0]; |
|
p = 0; |
|
while (huffsize[p]) { |
|
while (((int)huffsize[p]) == si) { |
|
huffcode[p++] = code; |
|
code++; |
|
} |
|
/* code is now 1 more than the last code used for codelength si; but |
|
* it must still fit in si bits, since no code is allowed to be all ones. |
|
*/ |
|
if (((JLONG)code) >= (((JLONG)1) << si)) |
|
ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); |
|
code <<= 1; |
|
si++; |
|
} |
|
|
|
/* Figure C.3: generate encoding tables */ |
|
/* These are code and size indexed by symbol value */ |
|
|
|
/* Set all codeless symbols to have code length 0; |
|
* this lets us detect duplicate VAL entries here, and later |
|
* allows emit_bits to detect any attempt to emit such symbols. |
|
*/ |
|
MEMZERO(dtbl->ehufsi, sizeof(dtbl->ehufsi)); |
|
|
|
/* This is also a convenient place to check for out-of-range |
|
* and duplicated VAL entries. We allow 0..255 for AC symbols |
|
* but only 0..15 for DC. (We could constrain them further |
|
* based on data depth and mode, but this seems enough.) |
|
*/ |
|
maxsymbol = isDC ? 15 : 255; |
|
|
|
for (p = 0; p < lastp; p++) { |
|
i = htbl->huffval[p]; |
|
if (i < 0 || i > maxsymbol || dtbl->ehufsi[i]) |
|
ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); |
|
dtbl->ehufco[i] = huffcode[p]; |
|
dtbl->ehufsi[i] = huffsize[p]; |
|
} |
|
} |
|
|
|
|
|
/* Outputting bytes to the file */ |
|
|
|
/* Emit a byte, taking 'action' if must suspend. */ |
|
#define emit_byte(state, val, action) { \ |
|
*(state)->next_output_byte++ = (JOCTET)(val); \ |
|
if (--(state)->free_in_buffer == 0) \ |
|
if (!dump_buffer(state)) \ |
|
{ action; } \ |
|
} |
|
|
|
|
|
LOCAL(boolean) |
|
dump_buffer(working_state *state) |
|
/* Empty the output buffer; return TRUE if successful, FALSE if must suspend */ |
|
{ |
|
struct jpeg_destination_mgr *dest = state->cinfo->dest; |
|
|
|
if (!(*dest->empty_output_buffer) (state->cinfo)) |
|
return FALSE; |
|
/* After a successful buffer dump, must reset buffer pointers */ |
|
state->next_output_byte = dest->next_output_byte; |
|
state->free_in_buffer = dest->free_in_buffer; |
|
return TRUE; |
|
} |
|
|
|
|
|
/* Outputting bits to the file */ |
|
|
|
/* These macros perform the same task as the emit_bits() function in the |
|
* original libjpeg code. In addition to reducing overhead by explicitly |
|
* inlining the code, additional performance is achieved by taking into |
|
* account the size of the bit buffer and waiting until it is almost full |
|
* before emptying it. This mostly benefits 64-bit platforms, since 6 |
|
* bytes can be stored in a 64-bit bit buffer before it has to be emptied. |
|
*/ |
|
|
|
#define EMIT_BYTE() { \ |
|
JOCTET c; \ |
|
put_bits -= 8; \ |
|
c = (JOCTET)GETJOCTET(put_buffer >> put_bits); \ |
|
*buffer++ = c; \ |
|
if (c == 0xFF) /* need to stuff a zero byte? */ \ |
|
*buffer++ = 0; \ |
|
} |
|
|
|
#define PUT_BITS(code, size) { \ |
|
put_bits += size; \ |
|
put_buffer = (put_buffer << size) | code; \ |
|
} |
|
|
|
#if SIZEOF_SIZE_T != 8 && !defined(_WIN64) |
|
|
|
#define CHECKBUF15() { \ |
|
if (put_bits > 15) { \ |
|
EMIT_BYTE() \ |
|
EMIT_BYTE() \ |
|
} \ |
|
} |
|
|
|
#endif |
|
|
|
#define CHECKBUF31() { \ |
|
if (put_bits > 31) { \ |
|
EMIT_BYTE() \ |
|
EMIT_BYTE() \ |
|
EMIT_BYTE() \ |
|
EMIT_BYTE() \ |
|
} \ |
|
} |
|
|
|
#define CHECKBUF47() { \ |
|
if (put_bits > 47) { \ |
|
EMIT_BYTE() \ |
|
EMIT_BYTE() \ |
|
EMIT_BYTE() \ |
|
EMIT_BYTE() \ |
|
EMIT_BYTE() \ |
|
EMIT_BYTE() \ |
|
} \ |
|
} |
|
|
|
#if !defined(_WIN32) && !defined(SIZEOF_SIZE_T) |
|
#error Cannot determine word size |
|
#endif |
|
|
|
#if SIZEOF_SIZE_T == 8 || defined(_WIN64) |
|
|
|
#define EMIT_BITS(code, size) { \ |
|
CHECKBUF47() \ |
|
PUT_BITS(code, size) \ |
|
} |
|
|
|
#define EMIT_CODE(code, size) { \ |
|
temp2 &= (((JLONG)1) << nbits) - 1; \ |
|
CHECKBUF31() \ |
|
PUT_BITS(code, size) \ |
|
PUT_BITS(temp2, nbits) \ |
|
} |
|
|
|
#else |
|
|
|
#define EMIT_BITS(code, size) { \ |
|
PUT_BITS(code, size) \ |
|
CHECKBUF15() \ |
|
} |
|
|
|
#define EMIT_CODE(code, size) { \ |
|
temp2 &= (((JLONG)1) << nbits) - 1; \ |
|
PUT_BITS(code, size) \ |
|
CHECKBUF15() \ |
|
PUT_BITS(temp2, nbits) \ |
|
CHECKBUF15() \ |
|
} |
|
|
|
#endif |
|
|
|
|
|
/* Although it is exceedingly rare, it is possible for a Huffman-encoded |
|
* coefficient block to be larger than the 128-byte unencoded block. For each |
|
* of the 64 coefficients, PUT_BITS is invoked twice, and each invocation can |
|
* theoretically store 16 bits (for a maximum of 2048 bits or 256 bytes per |
|
* encoded block.) If, for instance, one artificially sets the AC |
|
* coefficients to alternating values of 32767 and -32768 (using the JPEG |
|
* scanning order-- 1, 8, 16, etc.), then this will produce an encoded block |
|
* larger than 200 bytes. |
|
*/ |
|
#define BUFSIZE (DCTSIZE2 * 8) |
|
|
|
#define LOAD_BUFFER() { \ |
|
if (state->free_in_buffer < BUFSIZE) { \ |
|
localbuf = 1; \ |
|
buffer = _buffer; \ |
|
} else \ |
|
buffer = state->next_output_byte; \ |
|
} |
|
|
|
#define STORE_BUFFER() { \ |
|
if (localbuf) { \ |
|
bytes = buffer - _buffer; \ |
|
buffer = _buffer; \ |
|
while (bytes > 0) { \ |
|
bytestocopy = MIN(bytes, state->free_in_buffer); \ |
|
MEMCOPY(state->next_output_byte, buffer, bytestocopy); \ |
|
state->next_output_byte += bytestocopy; \ |
|
buffer += bytestocopy; \ |
|
state->free_in_buffer -= bytestocopy; \ |
|
if (state->free_in_buffer == 0) \ |
|
if (!dump_buffer(state)) return FALSE; \ |
|
bytes -= bytestocopy; \ |
|
} \ |
|
} else { \ |
|
state->free_in_buffer -= (buffer - state->next_output_byte); \ |
|
state->next_output_byte = buffer; \ |
|
} \ |
|
} |
|
|
|
|
|
LOCAL(boolean) |
|
flush_bits(working_state *state) |
|
{ |
|
JOCTET _buffer[BUFSIZE], *buffer; |
|
size_t put_buffer; int put_bits; |
|
size_t bytes, bytestocopy; int localbuf = 0; |
|
|
|
put_buffer = state->cur.put_buffer; |
|
put_bits = state->cur.put_bits; |
|
LOAD_BUFFER() |
|
|
|
/* fill any partial byte with ones */ |
|
PUT_BITS(0x7F, 7) |
|
while (put_bits >= 8) EMIT_BYTE() |
|
|
|
state->cur.put_buffer = 0; /* and reset bit-buffer to empty */ |
|
state->cur.put_bits = 0; |
|
STORE_BUFFER() |
|
|
|
return TRUE; |
|
} |
|
|
|
|
|
/* Encode a single block's worth of coefficients */ |
|
|
|
LOCAL(boolean) |
|
encode_one_block_simd(working_state *state, JCOEFPTR block, int last_dc_val, |
|
c_derived_tbl *dctbl, c_derived_tbl *actbl) |
|
{ |
|
JOCTET _buffer[BUFSIZE], *buffer; |
|
size_t bytes, bytestocopy; int localbuf = 0; |
|
|
|
LOAD_BUFFER() |
|
|
|
buffer = jsimd_huff_encode_one_block(state, buffer, block, last_dc_val, |
|
dctbl, actbl); |
|
|
|
STORE_BUFFER() |
|
|
|
return TRUE; |
|
} |
|
|
|
LOCAL(boolean) |
|
encode_one_block(working_state *state, JCOEFPTR block, int last_dc_val, |
|
c_derived_tbl *dctbl, c_derived_tbl *actbl) |
|
{ |
|
int temp, temp2, temp3; |
|
int nbits; |
|
int r, code, size; |
|
JOCTET _buffer[BUFSIZE], *buffer; |
|
size_t put_buffer; int put_bits; |
|
int code_0xf0 = actbl->ehufco[0xf0], size_0xf0 = actbl->ehufsi[0xf0]; |
|
size_t bytes, bytestocopy; int localbuf = 0; |
|
|
|
put_buffer = state->cur.put_buffer; |
|
put_bits = state->cur.put_bits; |
|
LOAD_BUFFER() |
|
|
|
/* Encode the DC coefficient difference per section F.1.2.1 */ |
|
|
|
temp = temp2 = block[0] - last_dc_val; |
|
|
|
/* This is a well-known technique for obtaining the absolute value without a |
|
* branch. It is derived from an assembly language technique presented in |
|
* "How to Optimize for the Pentium Processors", Copyright (c) 1996, 1997 by |
|
* Agner Fog. |
|
*/ |
|
temp3 = temp >> (CHAR_BIT * sizeof(int) - 1); |
|
temp ^= temp3; |
|
temp -= temp3; |
|
|
|
/* For a negative input, want temp2 = bitwise complement of abs(input) */ |
|
/* This code assumes we are on a two's complement machine */ |
|
temp2 += temp3; |
|
|
|
/* Find the number of bits needed for the magnitude of the coefficient */ |
|
nbits = JPEG_NBITS(temp); |
|
|
|
/* Emit the Huffman-coded symbol for the number of bits */ |
|
code = dctbl->ehufco[nbits]; |
|
size = dctbl->ehufsi[nbits]; |
|
EMIT_BITS(code, size) |
|
|
|
/* Mask off any extra bits in code */ |
|
temp2 &= (((JLONG)1) << nbits) - 1; |
|
|
|
/* Emit that number of bits of the value, if positive, */ |
|
/* or the complement of its magnitude, if negative. */ |
|
EMIT_BITS(temp2, nbits) |
|
|
|
/* Encode the AC coefficients per section F.1.2.2 */ |
|
|
|
r = 0; /* r = run length of zeros */ |
|
|
|
/* Manually unroll the k loop to eliminate the counter variable. This |
|
* improves performance greatly on systems with a limited number of |
|
* registers (such as x86.) |
|
*/ |
|
#define kloop(jpeg_natural_order_of_k) { \ |
|
if ((temp = block[jpeg_natural_order_of_k]) == 0) { \ |
|
r++; \ |
|
} else { \ |
|
temp2 = temp; \ |
|
/* Branch-less absolute value, bitwise complement, etc., same as above */ \ |
|
temp3 = temp >> (CHAR_BIT * sizeof(int) - 1); \ |
|
temp ^= temp3; \ |
|
temp -= temp3; \ |
|
temp2 += temp3; \ |
|
nbits = JPEG_NBITS_NONZERO(temp); \ |
|
/* if run length > 15, must emit special run-length-16 codes (0xF0) */ \ |
|
while (r > 15) { \ |
|
EMIT_BITS(code_0xf0, size_0xf0) \ |
|
r -= 16; \ |
|
} \ |
|
/* Emit Huffman symbol for run length / number of bits */ \ |
|
temp3 = (r << 4) + nbits; \ |
|
code = actbl->ehufco[temp3]; \ |
|
size = actbl->ehufsi[temp3]; \ |
|
EMIT_CODE(code, size) \ |
|
r = 0; \ |
|
} \ |
|
} |
|
|
|
/* One iteration for each value in jpeg_natural_order[] */ |
|
kloop(1); kloop(8); kloop(16); kloop(9); kloop(2); kloop(3); |
|
kloop(10); kloop(17); kloop(24); kloop(32); kloop(25); kloop(18); |
|
kloop(11); kloop(4); kloop(5); kloop(12); kloop(19); kloop(26); |
|
kloop(33); kloop(40); kloop(48); kloop(41); kloop(34); kloop(27); |
|
kloop(20); kloop(13); kloop(6); kloop(7); kloop(14); kloop(21); |
|
kloop(28); kloop(35); kloop(42); kloop(49); kloop(56); kloop(57); |
|
kloop(50); kloop(43); kloop(36); kloop(29); kloop(22); kloop(15); |
|
kloop(23); kloop(30); kloop(37); kloop(44); kloop(51); kloop(58); |
|
kloop(59); kloop(52); kloop(45); kloop(38); kloop(31); kloop(39); |
|
kloop(46); kloop(53); kloop(60); kloop(61); kloop(54); kloop(47); |
|
kloop(55); kloop(62); kloop(63); |
|
|
|
/* If the last coef(s) were zero, emit an end-of-block code */ |
|
if (r > 0) { |
|
code = actbl->ehufco[0]; |
|
size = actbl->ehufsi[0]; |
|
EMIT_BITS(code, size) |
|
} |
|
|
|
state->cur.put_buffer = put_buffer; |
|
state->cur.put_bits = put_bits; |
|
STORE_BUFFER() |
|
|
|
return TRUE; |
|
} |
|
|
|
|
|
/* |
|
* Emit a restart marker & resynchronize predictions. |
|
*/ |
|
|
|
LOCAL(boolean) |
|
emit_restart(working_state *state, int restart_num) |
|
{ |
|
int ci; |
|
|
|
if (!flush_bits(state)) |
|
return FALSE; |
|
|
|
emit_byte(state, 0xFF, return FALSE); |
|
emit_byte(state, JPEG_RST0 + restart_num, return FALSE); |
|
|
|
/* Re-initialize DC predictions to 0 */ |
|
for (ci = 0; ci < state->cinfo->comps_in_scan; ci++) |
|
state->cur.last_dc_val[ci] = 0; |
|
|
|
/* The restart counter is not updated until we successfully write the MCU. */ |
|
|
|
return TRUE; |
|
} |
|
|
|
|
|
/* |
|
* Encode and output one MCU's worth of Huffman-compressed coefficients. |
|
*/ |
|
|
|
METHODDEF(boolean) |
|
encode_mcu_huff(j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
|
{ |
|
huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy; |
|
working_state state; |
|
int blkn, ci; |
|
jpeg_component_info *compptr; |
|
|
|
/* Load up working state */ |
|
state.next_output_byte = cinfo->dest->next_output_byte; |
|
state.free_in_buffer = cinfo->dest->free_in_buffer; |
|
ASSIGN_STATE(state.cur, entropy->saved); |
|
state.cinfo = cinfo; |
|
|
|
/* Emit restart marker if needed */ |
|
if (cinfo->restart_interval) { |
|
if (entropy->restarts_to_go == 0) |
|
if (!emit_restart(&state, entropy->next_restart_num)) |
|
return FALSE; |
|
} |
|
|
|
/* Encode the MCU data blocks */ |
|
if (entropy->simd) { |
|
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
|
ci = cinfo->MCU_membership[blkn]; |
|
compptr = cinfo->cur_comp_info[ci]; |
|
if (!encode_one_block_simd(&state, |
|
MCU_data[blkn][0], state.cur.last_dc_val[ci], |
|
entropy->dc_derived_tbls[compptr->dc_tbl_no], |
|
entropy->ac_derived_tbls[compptr->ac_tbl_no])) |
|
return FALSE; |
|
/* Update last_dc_val */ |
|
state.cur.last_dc_val[ci] = MCU_data[blkn][0][0]; |
|
} |
|
} else { |
|
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
|
ci = cinfo->MCU_membership[blkn]; |
|
compptr = cinfo->cur_comp_info[ci]; |
|
if (!encode_one_block(&state, |
|
MCU_data[blkn][0], state.cur.last_dc_val[ci], |
|
entropy->dc_derived_tbls[compptr->dc_tbl_no], |
|
entropy->ac_derived_tbls[compptr->ac_tbl_no])) |
|
return FALSE; |
|
/* Update last_dc_val */ |
|
state.cur.last_dc_val[ci] = MCU_data[blkn][0][0]; |
|
} |
|
} |
|
|
|
/* Completed MCU, so update state */ |
|
cinfo->dest->next_output_byte = state.next_output_byte; |
|
cinfo->dest->free_in_buffer = state.free_in_buffer; |
|
ASSIGN_STATE(entropy->saved, state.cur); |
|
|
|
/* Update restart-interval state too */ |
|
if (cinfo->restart_interval) { |
|
if (entropy->restarts_to_go == 0) { |
|
entropy->restarts_to_go = cinfo->restart_interval; |
|
entropy->next_restart_num++; |
|
entropy->next_restart_num &= 7; |
|
} |
|
entropy->restarts_to_go--; |
|
} |
|
|
|
return TRUE; |
|
} |
|
|
|
|
|
/* |
|
* Finish up at the end of a Huffman-compressed scan. |
|
*/ |
|
|
|
METHODDEF(void) |
|
finish_pass_huff(j_compress_ptr cinfo) |
|
{ |
|
huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy; |
|
working_state state; |
|
|
|
/* Load up working state ... flush_bits needs it */ |
|
state.next_output_byte = cinfo->dest->next_output_byte; |
|
state.free_in_buffer = cinfo->dest->free_in_buffer; |
|
ASSIGN_STATE(state.cur, entropy->saved); |
|
state.cinfo = cinfo; |
|
|
|
/* Flush out the last data */ |
|
if (!flush_bits(&state)) |
|
ERREXIT(cinfo, JERR_CANT_SUSPEND); |
|
|
|
/* Update state */ |
|
cinfo->dest->next_output_byte = state.next_output_byte; |
|
cinfo->dest->free_in_buffer = state.free_in_buffer; |
|
ASSIGN_STATE(entropy->saved, state.cur); |
|
} |
|
|
|
|
|
/* |
|
* Huffman coding optimization. |
|
* |
|
* We first scan the supplied data and count the number of uses of each symbol |
|
* that is to be Huffman-coded. (This process MUST agree with the code above.) |
|
* Then we build a Huffman coding tree for the observed counts. |
|
* Symbols which are not needed at all for the particular image are not |
|
* assigned any code, which saves space in the DHT marker as well as in |
|
* the compressed data. |
|
*/ |
|
|
|
#ifdef ENTROPY_OPT_SUPPORTED |
|
|
|
|
|
/* Process a single block's worth of coefficients */ |
|
|
|
LOCAL(void) |
|
htest_one_block(j_compress_ptr cinfo, JCOEFPTR block, int last_dc_val, |
|
long dc_counts[], long ac_counts[]) |
|
{ |
|
register int temp; |
|
register int nbits; |
|
register int k, r; |
|
|
|
/* Encode the DC coefficient difference per section F.1.2.1 */ |
|
|
|
temp = block[0] - last_dc_val; |
|
if (temp < 0) |
|
temp = -temp; |
|
|
|
/* Find the number of bits needed for the magnitude of the coefficient */ |
|
nbits = 0; |
|
while (temp) { |
|
nbits++; |
|
temp >>= 1; |
|
} |
|
/* Check for out-of-range coefficient values. |
|
* Since we're encoding a difference, the range limit is twice as much. |
|
*/ |
|
if (nbits > MAX_COEF_BITS + 1) |
|
ERREXIT(cinfo, JERR_BAD_DCT_COEF); |
|
|
|
/* Count the Huffman symbol for the number of bits */ |
|
dc_counts[nbits]++; |
|
|
|
/* Encode the AC coefficients per section F.1.2.2 */ |
|
|
|
r = 0; /* r = run length of zeros */ |
|
|
|
for (k = 1; k < DCTSIZE2; k++) { |
|
if ((temp = block[jpeg_natural_order[k]]) == 0) { |
|
r++; |
|
} else { |
|
/* if run length > 15, must emit special run-length-16 codes (0xF0) */ |
|
while (r > 15) { |
|
ac_counts[0xF0]++; |
|
r -= 16; |
|
} |
|
|
|
/* Find the number of bits needed for the magnitude of the coefficient */ |
|
if (temp < 0) |
|
temp = -temp; |
|
|
|
/* Find the number of bits needed for the magnitude of the coefficient */ |
|
nbits = 1; /* there must be at least one 1 bit */ |
|
while ((temp >>= 1)) |
|
nbits++; |
|
/* Check for out-of-range coefficient values */ |
|
if (nbits > MAX_COEF_BITS) |
|
ERREXIT(cinfo, JERR_BAD_DCT_COEF); |
|
|
|
/* Count Huffman symbol for run length / number of bits */ |
|
ac_counts[(r << 4) + nbits]++; |
|
|
|
r = 0; |
|
} |
|
} |
|
|
|
/* If the last coef(s) were zero, emit an end-of-block code */ |
|
if (r > 0) |
|
ac_counts[0]++; |
|
} |
|
|
|
|
|
/* |
|
* Trial-encode one MCU's worth of Huffman-compressed coefficients. |
|
* No data is actually output, so no suspension return is possible. |
|
*/ |
|
|
|
METHODDEF(boolean) |
|
encode_mcu_gather(j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
|
{ |
|
huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy; |
|
int blkn, ci; |
|
jpeg_component_info *compptr; |
|
|
|
/* Take care of restart intervals if needed */ |
|
if (cinfo->restart_interval) { |
|
if (entropy->restarts_to_go == 0) { |
|
/* Re-initialize DC predictions to 0 */ |
|
for (ci = 0; ci < cinfo->comps_in_scan; ci++) |
|
entropy->saved.last_dc_val[ci] = 0; |
|
/* Update restart state */ |
|
entropy->restarts_to_go = cinfo->restart_interval; |
|
} |
|
entropy->restarts_to_go--; |
|
} |
|
|
|
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
|
ci = cinfo->MCU_membership[blkn]; |
|
compptr = cinfo->cur_comp_info[ci]; |
|
htest_one_block(cinfo, MCU_data[blkn][0], entropy->saved.last_dc_val[ci], |
|
entropy->dc_count_ptrs[compptr->dc_tbl_no], |
|
entropy->ac_count_ptrs[compptr->ac_tbl_no]); |
|
entropy->saved.last_dc_val[ci] = MCU_data[blkn][0][0]; |
|
} |
|
|
|
return TRUE; |
|
} |
|
|
|
|
|
/* |
|
* Generate the best Huffman code table for the given counts, fill htbl. |
|
* Note this is also used by jcphuff.c. |
|
* |
|
* The JPEG standard requires that no symbol be assigned a codeword of all |
|
* one bits (so that padding bits added at the end of a compressed segment |
|
* can't look like a valid code). Because of the canonical ordering of |
|
* codewords, this just means that there must be an unused slot in the |
|
* longest codeword length category. Annex K (Clause K.2) of |
|
* Rec. ITU-T T.81 (1992) | ISO/IEC 10918-1:1994 suggests reserving such a slot |
|
* by pretending that symbol 256 is a valid symbol with count 1. In theory |
|
* that's not optimal; giving it count zero but including it in the symbol set |
|
* anyway should give a better Huffman code. But the theoretically better code |
|
* actually seems to come out worse in practice, because it produces more |
|
* all-ones bytes (which incur stuffed zero bytes in the final file). In any |
|
* case the difference is tiny. |
|
* |
|
* The JPEG standard requires Huffman codes to be no more than 16 bits long. |
|
* If some symbols have a very small but nonzero probability, the Huffman tree |
|
* must be adjusted to meet the code length restriction. We currently use |
|
* the adjustment method suggested in JPEG section K.2. This method is *not* |
|
* optimal; it may not choose the best possible limited-length code. But |
|
* typically only very-low-frequency symbols will be given less-than-optimal |
|
* lengths, so the code is almost optimal. Experimental comparisons against |
|
* an optimal limited-length-code algorithm indicate that the difference is |
|
* microscopic --- usually less than a hundredth of a percent of total size. |
|
* So the extra complexity of an optimal algorithm doesn't seem worthwhile. |
|
*/ |
|
|
|
GLOBAL(void) |
|
jpeg_gen_optimal_table(j_compress_ptr cinfo, JHUFF_TBL *htbl, long freq[]) |
|
{ |
|
#define MAX_CLEN 32 /* assumed maximum initial code length */ |
|
UINT8 bits[MAX_CLEN + 1]; /* bits[k] = # of symbols with code length k */ |
|
int codesize[257]; /* codesize[k] = code length of symbol k */ |
|
int others[257]; /* next symbol in current branch of tree */ |
|
int c1, c2; |
|
int p, i, j; |
|
long v; |
|
|
|
/* This algorithm is explained in section K.2 of the JPEG standard */ |
|
|
|
MEMZERO(bits, sizeof(bits)); |
|
MEMZERO(codesize, sizeof(codesize)); |
|
for (i = 0; i < 257; i++) |
|
others[i] = -1; /* init links to empty */ |
|
|
|
freq[256] = 1; /* make sure 256 has a nonzero count */ |
|
/* Including the pseudo-symbol 256 in the Huffman procedure guarantees |
|
* that no real symbol is given code-value of all ones, because 256 |
|
* will be placed last in the largest codeword category. |
|
*/ |
|
|
|
/* Huffman's basic algorithm to assign optimal code lengths to symbols */ |
|
|
|
for (;;) { |
|
/* Find the smallest nonzero frequency, set c1 = its symbol */ |
|
/* In case of ties, take the larger symbol number */ |
|
c1 = -1; |
|
v = 1000000000L; |
|
for (i = 0; i <= 256; i++) { |
|
if (freq[i] && freq[i] <= v) { |
|
v = freq[i]; |
|
c1 = i; |
|
} |
|
} |
|
|
|
/* Find the next smallest nonzero frequency, set c2 = its symbol */ |
|
/* In case of ties, take the larger symbol number */ |
|
c2 = -1; |
|
v = 1000000000L; |
|
for (i = 0; i <= 256; i++) { |
|
if (freq[i] && freq[i] <= v && i != c1) { |
|
v = freq[i]; |
|
c2 = i; |
|
} |
|
} |
|
|
|
/* Done if we've merged everything into one frequency */ |
|
if (c2 < 0) |
|
break; |
|
|
|
/* Else merge the two counts/trees */ |
|
freq[c1] += freq[c2]; |
|
freq[c2] = 0; |
|
|
|
/* Increment the codesize of everything in c1's tree branch */ |
|
codesize[c1]++; |
|
while (others[c1] >= 0) { |
|
c1 = others[c1]; |
|
codesize[c1]++; |
|
} |
|
|
|
others[c1] = c2; /* chain c2 onto c1's tree branch */ |
|
|
|
/* Increment the codesize of everything in c2's tree branch */ |
|
codesize[c2]++; |
|
while (others[c2] >= 0) { |
|
c2 = others[c2]; |
|
codesize[c2]++; |
|
} |
|
} |
|
|
|
/* Now count the number of symbols of each code length */ |
|
for (i = 0; i <= 256; i++) { |
|
if (codesize[i]) { |
|
/* The JPEG standard seems to think that this can't happen, */ |
|
/* but I'm paranoid... */ |
|
if (codesize[i] > MAX_CLEN) |
|
ERREXIT(cinfo, JERR_HUFF_CLEN_OVERFLOW); |
|
|
|
bits[codesize[i]]++; |
|
} |
|
} |
|
|
|
/* JPEG doesn't allow symbols with code lengths over 16 bits, so if the pure |
|
* Huffman procedure assigned any such lengths, we must adjust the coding. |
|
* Here is what Rec. ITU-T T.81 | ISO/IEC 10918-1 says about how this next |
|
* bit works: Since symbols are paired for the longest Huffman code, the |
|
* symbols are removed from this length category two at a time. The prefix |
|
* for the pair (which is one bit shorter) is allocated to one of the pair; |
|
* then, skipping the BITS entry for that prefix length, a code word from the |
|
* next shortest nonzero BITS entry is converted into a prefix for two code |
|
* words one bit longer. |
|
*/ |
|
|
|
for (i = MAX_CLEN; i > 16; i--) { |
|
while (bits[i] > 0) { |
|
j = i - 2; /* find length of new prefix to be used */ |
|
while (bits[j] == 0) |
|
j--; |
|
|
|
bits[i] -= 2; /* remove two symbols */ |
|
bits[i - 1]++; /* one goes in this length */ |
|
bits[j + 1] += 2; /* two new symbols in this length */ |
|
bits[j]--; /* symbol of this length is now a prefix */ |
|
} |
|
} |
|
|
|
/* Remove the count for the pseudo-symbol 256 from the largest codelength */ |
|
while (bits[i] == 0) /* find largest codelength still in use */ |
|
i--; |
|
bits[i]--; |
|
|
|
/* Return final symbol counts (only for lengths 0..16) */ |
|
MEMCOPY(htbl->bits, bits, sizeof(htbl->bits)); |
|
|
|
/* Return a list of the symbols sorted by code length */ |
|
/* It's not real clear to me why we don't need to consider the codelength |
|
* changes made above, but Rec. ITU-T T.81 | ISO/IEC 10918-1 seems to think |
|
* this works. |
|
*/ |
|
p = 0; |
|
for (i = 1; i <= MAX_CLEN; i++) { |
|
for (j = 0; j <= 255; j++) { |
|
if (codesize[j] == i) { |
|
htbl->huffval[p] = (UINT8)j; |
|
p++; |
|
} |
|
} |
|
} |
|
|
|
/* Set sent_table FALSE so updated table will be written to JPEG file. */ |
|
htbl->sent_table = FALSE; |
|
} |
|
|
|
|
|
/* |
|
* Finish up a statistics-gathering pass and create the new Huffman tables. |
|
*/ |
|
|
|
METHODDEF(void) |
|
finish_pass_gather(j_compress_ptr cinfo) |
|
{ |
|
huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy; |
|
int ci, dctbl, actbl; |
|
jpeg_component_info *compptr; |
|
JHUFF_TBL **htblptr; |
|
boolean did_dc[NUM_HUFF_TBLS]; |
|
boolean did_ac[NUM_HUFF_TBLS]; |
|
|
|
/* It's important not to apply jpeg_gen_optimal_table more than once |
|
* per table, because it clobbers the input frequency counts! |
|
*/ |
|
MEMZERO(did_dc, sizeof(did_dc)); |
|
MEMZERO(did_ac, sizeof(did_ac)); |
|
|
|
for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
|
compptr = cinfo->cur_comp_info[ci]; |
|
dctbl = compptr->dc_tbl_no; |
|
actbl = compptr->ac_tbl_no; |
|
if (!did_dc[dctbl]) { |
|
htblptr = &cinfo->dc_huff_tbl_ptrs[dctbl]; |
|
if (*htblptr == NULL) |
|
*htblptr = jpeg_alloc_huff_table((j_common_ptr)cinfo); |
|
jpeg_gen_optimal_table(cinfo, *htblptr, entropy->dc_count_ptrs[dctbl]); |
|
did_dc[dctbl] = TRUE; |
|
} |
|
if (!did_ac[actbl]) { |
|
htblptr = &cinfo->ac_huff_tbl_ptrs[actbl]; |
|
if (*htblptr == NULL) |
|
*htblptr = jpeg_alloc_huff_table((j_common_ptr)cinfo); |
|
jpeg_gen_optimal_table(cinfo, *htblptr, entropy->ac_count_ptrs[actbl]); |
|
did_ac[actbl] = TRUE; |
|
} |
|
} |
|
} |
|
|
|
|
|
#endif /* ENTROPY_OPT_SUPPORTED */ |
|
|
|
|
|
/* |
|
* Module initialization routine for Huffman entropy encoding. |
|
*/ |
|
|
|
GLOBAL(void) |
|
jinit_huff_encoder(j_compress_ptr cinfo) |
|
{ |
|
huff_entropy_ptr entropy; |
|
int i; |
|
|
|
entropy = (huff_entropy_ptr) |
|
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, |
|
sizeof(huff_entropy_encoder)); |
|
cinfo->entropy = (struct jpeg_entropy_encoder *)entropy; |
|
entropy->pub.start_pass = start_pass_huff; |
|
|
|
/* Mark tables unallocated */ |
|
for (i = 0; i < NUM_HUFF_TBLS; i++) { |
|
entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL; |
|
#ifdef ENTROPY_OPT_SUPPORTED |
|
entropy->dc_count_ptrs[i] = entropy->ac_count_ptrs[i] = NULL; |
|
#endif |
|
} |
|
}
|
|
|