mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
111 lines
3.3 KiB
111 lines
3.3 KiB
#include "opencv2/imgproc/imgproc.hpp" |
|
#include "opencv2/objdetect/objdetect.hpp" |
|
#include "opencv2/highgui/highgui.hpp" |
|
|
|
#include <stdio.h> |
|
#include <string.h> |
|
#include <ctype.h> |
|
|
|
using namespace cv; |
|
using namespace std; |
|
|
|
// static void help() |
|
// { |
|
// printf( |
|
// "\nDemonstrate the use of the HoG descriptor using\n" |
|
// " HOGDescriptor::hog.setSVMDetector(HOGDescriptor::getDefaultPeopleDetector());\n" |
|
// "Usage:\n" |
|
// "./peopledetect (<image_filename> | <image_list>.txt)\n\n"); |
|
// } |
|
|
|
int main(int argc, char** argv) |
|
{ |
|
Mat img; |
|
FILE* f = 0; |
|
char _filename[1024]; |
|
|
|
if( argc == 1 ) |
|
{ |
|
printf("Usage: peopledetect (<image_filename> | <image_list>.txt)\n"); |
|
return 0; |
|
} |
|
img = imread(argv[1]); |
|
|
|
if( img.data ) |
|
{ |
|
strcpy(_filename, argv[1]); |
|
} |
|
else |
|
{ |
|
f = fopen(argv[1], "rt"); |
|
if(!f) |
|
{ |
|
fprintf( stderr, "ERROR: the specified file could not be loaded\n"); |
|
return -1; |
|
} |
|
} |
|
|
|
HOGDescriptor hog; |
|
hog.setSVMDetector(HOGDescriptor::getDefaultPeopleDetector()); |
|
namedWindow("people detector", 1); |
|
|
|
for(;;) |
|
{ |
|
char* filename = _filename; |
|
if(f) |
|
{ |
|
if(!fgets(filename, (int)sizeof(_filename)-2, f)) |
|
break; |
|
//while(*filename && isspace(*filename)) |
|
// ++filename; |
|
if(filename[0] == '#') |
|
continue; |
|
int l = (int)strlen(filename); |
|
while(l > 0 && isspace(filename[l-1])) |
|
--l; |
|
filename[l] = '\0'; |
|
img = imread(filename); |
|
} |
|
printf("%s:\n", filename); |
|
if(!img.data) |
|
continue; |
|
|
|
fflush(stdout); |
|
vector<Rect> found, found_filtered; |
|
double t = (double)getTickCount(); |
|
// run the detector with default parameters. to get a higher hit-rate |
|
// (and more false alarms, respectively), decrease the hitThreshold and |
|
// groupThreshold (set groupThreshold to 0 to turn off the grouping completely). |
|
hog.detectMultiScale(img, found, 0, Size(8,8), Size(32,32), 1.05, 2); |
|
t = (double)getTickCount() - t; |
|
printf("tdetection time = %gms\n", t*1000./cv::getTickFrequency()); |
|
size_t i, j; |
|
for( i = 0; i < found.size(); i++ ) |
|
{ |
|
Rect r = found[i]; |
|
for( j = 0; j < found.size(); j++ ) |
|
if( j != i && (r & found[j]) == r) |
|
break; |
|
if( j == found.size() ) |
|
found_filtered.push_back(r); |
|
} |
|
for( i = 0; i < found_filtered.size(); i++ ) |
|
{ |
|
Rect r = found_filtered[i]; |
|
// the HOG detector returns slightly larger rectangles than the real objects. |
|
// so we slightly shrink the rectangles to get a nicer output. |
|
r.x += cvRound(r.width*0.1); |
|
r.width = cvRound(r.width*0.8); |
|
r.y += cvRound(r.height*0.07); |
|
r.height = cvRound(r.height*0.8); |
|
rectangle(img, r.tl(), r.br(), cv::Scalar(0,255,0), 3); |
|
} |
|
imshow("people detector", img); |
|
int c = waitKey(0) & 255; |
|
if( c == 'q' || c == 'Q' || !f) |
|
break; |
|
} |
|
if(f) |
|
fclose(f); |
|
return 0; |
|
}
|
|
|