mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
94 lines
2.8 KiB
94 lines
2.8 KiB
#include "opencv2/legacy/legacy.hpp" |
|
#include "opencv2/highgui/highgui.hpp" |
|
|
|
using namespace cv; |
|
|
|
int main( int /*argc*/, char** /*argv*/ ) |
|
{ |
|
const int N = 4; |
|
const int N1 = (int)sqrt((double)N); |
|
const Scalar colors[] = |
|
{ |
|
Scalar(0,0,255), Scalar(0,255,0), |
|
Scalar(0,255,255),Scalar(255,255,0) |
|
}; |
|
|
|
int i, j; |
|
int nsamples = 100; |
|
Mat samples( nsamples, 2, CV_32FC1 ); |
|
Mat labels; |
|
Mat img = Mat::zeros( Size( 500, 500 ), CV_8UC3 ); |
|
Mat sample( 1, 2, CV_32FC1 ); |
|
CvEM em_model; |
|
CvEMParams params; |
|
|
|
samples = samples.reshape(2, 0); |
|
for( i = 0; i < N; i++ ) |
|
{ |
|
// form the training samples |
|
Mat samples_part = samples.rowRange(i*nsamples/N, (i+1)*nsamples/N ); |
|
|
|
Scalar mean(((i%N1)+1)*img.rows/(N1+1), |
|
((i/N1)+1)*img.rows/(N1+1)); |
|
Scalar sigma(30,30); |
|
randn( samples_part, mean, sigma ); |
|
} |
|
samples = samples.reshape(1, 0); |
|
|
|
// initialize model parameters |
|
params.covs = NULL; |
|
params.means = NULL; |
|
params.weights = NULL; |
|
params.probs = NULL; |
|
params.nclusters = N; |
|
params.cov_mat_type = CvEM::COV_MAT_SPHERICAL; |
|
params.start_step = CvEM::START_AUTO_STEP; |
|
params.term_crit.max_iter = 300; |
|
params.term_crit.epsilon = 0.1; |
|
params.term_crit.type = CV_TERMCRIT_ITER|CV_TERMCRIT_EPS; |
|
|
|
// cluster the data |
|
em_model.train( samples, Mat(), params, &labels ); |
|
|
|
#if 0 |
|
// the piece of code shows how to repeatedly optimize the model |
|
// with less-constrained parameters |
|
//(COV_MAT_DIAGONAL instead of COV_MAT_SPHERICAL) |
|
// when the output of the first stage is used as input for the second one. |
|
CvEM em_model2; |
|
params.cov_mat_type = CvEM::COV_MAT_DIAGONAL; |
|
params.start_step = CvEM::START_E_STEP; |
|
params.means = em_model.get_means(); |
|
params.covs = (const CvMat**)em_model.get_covs(); |
|
params.weights = em_model.get_weights(); |
|
|
|
em_model2.train( samples, Mat(), params, &labels ); |
|
// to use em_model2, replace em_model.predict() |
|
// with em_model2.predict() below |
|
#endif |
|
// classify every image pixel |
|
for( i = 0; i < img.rows; i++ ) |
|
{ |
|
for( j = 0; j < img.cols; j++ ) |
|
{ |
|
sample.at<float>(0) = (float)j; |
|
sample.at<float>(1) = (float)i; |
|
int response = cvRound(em_model.predict( sample )); |
|
Scalar c = colors[response]; |
|
|
|
circle( img, Point(j, i), 1, c*0.75, CV_FILLED ); |
|
} |
|
} |
|
|
|
//draw the clustered samples |
|
for( i = 0; i < nsamples; i++ ) |
|
{ |
|
Point pt(cvRound(samples.at<float>(i, 0)), cvRound(samples.at<float>(i, 1))); |
|
circle( img, pt, 1, colors[labels.at<int>(i)], CV_FILLED ); |
|
} |
|
|
|
imshow( "EM-clustering result", img ); |
|
waitKey(0); |
|
|
|
return 0; |
|
}
|
|
|