Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

248 lines
5.9 KiB

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "test_precomp.hpp"
namespace opencv_test { namespace {
TEST(Core_OutputArrayCreate, _1997)
{
struct local {
static void create(OutputArray arr, Size submatSize, int type)
{
int sizes[] = {submatSize.width, submatSize.height};
arr.create(sizeof(sizes)/sizeof(sizes[0]), sizes, type);
}
};
Mat mat(Size(512, 512), CV_8U);
Size submatSize = Size(256, 256);
ASSERT_NO_THROW(local::create( mat(Rect(Point(), submatSize)), submatSize, mat.type() ));
}
TEST(Core_SaturateCast, NegativeNotClipped)
{
double d = -1.0;
unsigned int val = cv::saturate_cast<unsigned int>(d);
ASSERT_EQ(0xffffffff, val);
}
template<typename T, typename U>
static double maxAbsDiff(const T &t, const U &u)
{
Mat_<double> d;
absdiff(t, u, d);
double ret;
minMaxLoc(d, NULL, &ret);
return ret;
}
TEST(Core_OutputArrayAssign, _Matxd_Matd)
{
Mat expected = (Mat_<double>(2,3) << 1, 2, 3, .1, .2, .3);
Matx23d actualx;
{
OutputArray oa(actualx);
oa.assign(expected);
}
Mat actual = (Mat) actualx;
EXPECT_LE(maxAbsDiff(expected, actual), 0.0);
}
TEST(Core_OutputArrayAssign, _Matxd_Matf)
{
Mat expected = (Mat_<float>(2,3) << 1, 2, 3, .1, .2, .3);
Matx23d actualx;
{
OutputArray oa(actualx);
oa.assign(expected);
}
Mat actual = (Mat) actualx;
EXPECT_LE(maxAbsDiff(expected, actual), FLT_EPSILON);
}
TEST(Core_OutputArrayAssign, _Matxf_Matd)
{
Mat expected = (Mat_<double>(2,3) << 1, 2, 3, .1, .2, .3);
Matx23f actualx;
{
OutputArray oa(actualx);
oa.assign(expected);
}
Mat actual = (Mat) actualx;
EXPECT_LE(maxAbsDiff(expected, actual), FLT_EPSILON);
}
TEST(Core_OutputArrayAssign, _Matxd_UMatd)
{
Mat expected = (Mat_<double>(2,3) << 1, 2, 3, .1, .2, .3);
UMat uexpected = expected.getUMat(ACCESS_READ);
Matx23d actualx;
{
OutputArray oa(actualx);
oa.assign(uexpected);
}
Mat actual = (Mat) actualx;
EXPECT_LE(maxAbsDiff(expected, actual), 0.0);
}
TEST(Core_OutputArrayAssign, _Matxd_UMatf)
{
Mat expected = (Mat_<float>(2,3) << 1, 2, 3, .1, .2, .3);
UMat uexpected = expected.getUMat(ACCESS_READ);
Matx23d actualx;
{
OutputArray oa(actualx);
oa.assign(uexpected);
}
Mat actual = (Mat) actualx;
EXPECT_LE(maxAbsDiff(expected, actual), FLT_EPSILON);
}
TEST(Core_OutputArrayAssign, _Matxf_UMatd)
{
Mat expected = (Mat_<double>(2,3) << 1, 2, 3, .1, .2, .3);
UMat uexpected = expected.getUMat(ACCESS_READ);
Matx23f actualx;
{
OutputArray oa(actualx);
oa.assign(uexpected);
}
Mat actual = (Mat) actualx;
EXPECT_LE(maxAbsDiff(expected, actual), FLT_EPSILON);
}
int fixedType_handler(OutputArray dst)
{
int type = CV_32FC2; // return points only {x, y}
if (dst.fixedType())
{
type = dst.type();
CV_Assert(type == CV_32FC2 || type == CV_32FC3); // allow points + confidence level: {x, y, confidence}
}
const int N = 100;
dst.create(Size(1, N), type);
Mat m = dst.getMat();
if (m.type() == CV_32FC2)
{
for (int i = 0; i < N; i++)
m.at<Vec2f>(i) = Vec2f((float)i, (float)(i*2));
}
else if (m.type() == CV_32FC3)
{
for (int i = 0; i < N; i++)
m.at<Vec3f>(i) = Vec3f((float)i, (float)(i*2), 1.0f / (i + 1));
}
else
{
CV_Assert(0 && "Internal error");
}
return CV_MAT_CN(type);
}
TEST(Core_OutputArray, FixedType)
{
Mat_<Vec2f> pointsOnly;
int num_pointsOnly = fixedType_handler(pointsOnly);
EXPECT_EQ(2, num_pointsOnly);
Mat_<Vec3f> pointsWithConfidence;
int num_pointsWithConfidence = fixedType_handler(pointsWithConfidence);
EXPECT_EQ(3, num_pointsWithConfidence);
Mat defaultResult;
int num_defaultResult = fixedType_handler(defaultResult);
EXPECT_EQ(2, num_defaultResult);
}
TEST(Core_String, find_last_of__with__empty_string)
{
cv::String s;
size_t p = s.find_last_of("q", 0);
// npos is not exported: EXPECT_EQ(cv::String::npos, p);
EXPECT_EQ(std::string::npos, p);
}
TEST(Core_String, end_method_regression)
{
cv::String old_string = "012345";
cv::String new_string(old_string.begin(), old_string.end());
EXPECT_EQ(6u, new_string.size());
}
TEST(Core_Copy, repeat_regression_8972)
{
Mat src = (Mat_<int>(1, 4) << 1, 2, 3, 4);
ASSERT_ANY_THROW({
repeat(src, 5, 1, src);
});
}
class ThrowErrorParallelLoopBody : public cv::ParallelLoopBody
{
public:
ThrowErrorParallelLoopBody(cv::Mat& dst, int i) : dst_(dst), i_(i) {}
~ThrowErrorParallelLoopBody() {}
void operator()(const cv::Range& r) const
{
for (int i = r.start; i < r.end; i++)
{
CV_Assert(i != i_);
dst_.row(i).setTo(1);
}
}
protected:
Mat dst_;
int i_;
};
TEST(Core_Parallel, propagate_exceptions)
{
Mat dst1(1000, 100, CV_8SC1, Scalar::all(0));
ASSERT_NO_THROW({
parallel_for_(cv::Range(0, dst1.rows), ThrowErrorParallelLoopBody(dst1, -1));
});
Mat dst2(1000, 100, CV_8SC1, Scalar::all(0));
ASSERT_THROW({
parallel_for_(cv::Range(0, dst2.rows), ThrowErrorParallelLoopBody(dst2, dst2.rows / 2));
}, cv::Exception);
}
TEST(Core_Version, consistency)
{
// this test verifies that OpenCV version loaded in runtime
// is the same this test has been built with
EXPECT_EQ(CV_VERSION_MAJOR, cv::getVersionMajor());
EXPECT_EQ(CV_VERSION_MINOR, cv::getVersionMinor());
EXPECT_EQ(CV_VERSION_REVISION, cv::getVersionRevision());
EXPECT_EQ(String(CV_VERSION), cv::getVersionString());
}
}} // namespace