mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
213 lines
7.6 KiB
213 lines
7.6 KiB
#include <algorithm> |
|
#include <iostream> |
|
#include <sstream> |
|
|
|
#include <opencv2/imgproc.hpp> |
|
#include <opencv2/imgcodecs.hpp> |
|
|
|
#include <opencv2/gapi.hpp> |
|
#include <opencv2/gapi/core.hpp> |
|
#include <opencv2/gapi/imgproc.hpp> |
|
#include <opencv2/gapi/infer.hpp> |
|
#include <opencv2/gapi/render.hpp> |
|
#include <opencv2/gapi/infer/onnx.hpp> |
|
#include <opencv2/gapi/cpu/gcpukernel.hpp> |
|
#include <opencv2/gapi/streaming/cap.hpp> |
|
#include <opencv2/highgui.hpp> |
|
|
|
namespace custom { |
|
|
|
G_API_NET(ObjDetector, <cv::GMat(cv::GMat)>, "object-detector"); |
|
|
|
using GDetections = cv::GArray<cv::Rect>; |
|
using GSize = cv::GOpaque<cv::Size>; |
|
using GPrims = cv::GArray<cv::gapi::wip::draw::Prim>; |
|
|
|
G_API_OP(GetSize, <GSize(cv::GMat)>, "sample.custom.get-size") { |
|
static cv::GOpaqueDesc outMeta(const cv::GMatDesc &) { |
|
return cv::empty_gopaque_desc(); |
|
} |
|
}; |
|
G_API_OP(ParseSSD, <GDetections(cv::GMat, GSize)>, "sample.custom.parse-ssd") { |
|
static cv::GArrayDesc outMeta(const cv::GMatDesc &, const cv::GOpaqueDesc &) { |
|
return cv::empty_array_desc(); |
|
} |
|
}; |
|
G_API_OP(BBoxes, <GPrims(GDetections)>, "sample.custom.b-boxes") { |
|
static cv::GArrayDesc outMeta(const cv::GArrayDesc &) { |
|
return cv::empty_array_desc(); |
|
} |
|
}; |
|
|
|
GAPI_OCV_KERNEL(OCVGetSize, GetSize) { |
|
static void run(const cv::Mat &in, cv::Size &out) { |
|
out = {in.cols, in.rows}; |
|
} |
|
}; |
|
GAPI_OCV_KERNEL(OCVParseSSD, ParseSSD) { |
|
static void run(const cv::Mat &in_ssd_result, |
|
const cv::Size &in_parent_size, |
|
std::vector<cv::Rect> &out_objects) { |
|
const auto &in_ssd_dims = in_ssd_result.size; |
|
CV_Assert(in_ssd_dims.dims() == 4u); |
|
|
|
const int MAX_PROPOSALS = in_ssd_dims[2]; |
|
const int OBJECT_SIZE = in_ssd_dims[3]; |
|
|
|
CV_Assert(OBJECT_SIZE == 7); // fixed SSD object size |
|
|
|
const cv::Rect surface({0,0}, in_parent_size); |
|
|
|
out_objects.clear(); |
|
|
|
const float *data = in_ssd_result.ptr<float>(); |
|
for (int i = 0; i < MAX_PROPOSALS; i++) { |
|
const float image_id = data[i * OBJECT_SIZE + 0]; |
|
const float label = data[i * OBJECT_SIZE + 1]; |
|
const float confidence = data[i * OBJECT_SIZE + 2]; |
|
const float rc_left = data[i * OBJECT_SIZE + 3]; |
|
const float rc_top = data[i * OBJECT_SIZE + 4]; |
|
const float rc_right = data[i * OBJECT_SIZE + 5]; |
|
const float rc_bottom = data[i * OBJECT_SIZE + 6]; |
|
(void) label; // unused |
|
|
|
if (image_id < 0.f) { |
|
break; // marks end-of-detections |
|
} |
|
if (confidence < 0.5f) { |
|
continue; // skip objects with low confidence |
|
} |
|
|
|
// map relative coordinates to the original image scale |
|
cv::Rect rc; |
|
rc.x = static_cast<int>(rc_left * in_parent_size.width); |
|
rc.y = static_cast<int>(rc_top * in_parent_size.height); |
|
rc.width = static_cast<int>(rc_right * in_parent_size.width) - rc.x; |
|
rc.height = static_cast<int>(rc_bottom * in_parent_size.height) - rc.y; |
|
out_objects.emplace_back(rc & surface); |
|
} |
|
} |
|
}; |
|
GAPI_OCV_KERNEL(OCVBBoxes, BBoxes) { |
|
// This kernel converts the rectangles into G-API's |
|
// rendering primitives |
|
static void run(const std::vector<cv::Rect> &in_obj_rcs, |
|
std::vector<cv::gapi::wip::draw::Prim> &out_prims) { |
|
out_prims.clear(); |
|
const auto cvt = [](const cv::Rect &rc, const cv::Scalar &clr) { |
|
return cv::gapi::wip::draw::Rect(rc, clr, 2); |
|
}; |
|
for (auto &&rc : in_obj_rcs) { |
|
out_prims.emplace_back(cvt(rc, CV_RGB(0,255,0))); // green |
|
} |
|
|
|
std::cout << "Detections:"; |
|
for (auto &&rc : in_obj_rcs) std::cout << ' ' << rc; |
|
std::cout << std::endl; |
|
} |
|
}; |
|
|
|
} // namespace custom |
|
|
|
namespace { |
|
void remap_ssd_ports(const std::unordered_map<std::string, cv::Mat> &onnx, |
|
std::unordered_map<std::string, cv::Mat> &gapi) { |
|
// Assemble ONNX-processed outputs back to a single 1x1x200x7 blob |
|
// to preserve compatibility with OpenVINO-based SSD pipeline |
|
const cv::Mat &num_detections = onnx.at("num_detections:0"); |
|
const cv::Mat &detection_boxes = onnx.at("detection_boxes:0"); |
|
const cv::Mat &detection_scores = onnx.at("detection_scores:0"); |
|
const cv::Mat &detection_classes = onnx.at("detection_classes:0"); |
|
|
|
GAPI_Assert(num_detections.depth() == CV_32F); |
|
GAPI_Assert(detection_boxes.depth() == CV_32F); |
|
GAPI_Assert(detection_scores.depth() == CV_32F); |
|
GAPI_Assert(detection_classes.depth() == CV_32F); |
|
|
|
cv::Mat &ssd_output = gapi.at("detection_output"); |
|
|
|
const int num_objects = static_cast<int>(num_detections.ptr<float>()[0]); |
|
const float *in_boxes = detection_boxes.ptr<float>(); |
|
const float *in_scores = detection_scores.ptr<float>(); |
|
const float *in_classes = detection_classes.ptr<float>(); |
|
float *ptr = ssd_output.ptr<float>(); |
|
|
|
for (int i = 0; i < num_objects; i++) { |
|
ptr[0] = 0.f; // "image_id" |
|
ptr[1] = in_classes[i]; // "label" |
|
ptr[2] = in_scores[i]; // "confidence" |
|
ptr[3] = in_boxes[4*i + 1]; // left |
|
ptr[4] = in_boxes[4*i + 0]; // top |
|
ptr[5] = in_boxes[4*i + 3]; // right |
|
ptr[6] = in_boxes[4*i + 2]; // bottom |
|
|
|
ptr += 7; |
|
in_boxes += 4; |
|
} |
|
if (num_objects < ssd_output.size[2]-1) { |
|
// put a -1 mark at the end of output blob if there is space left |
|
ptr[0] = -1.f; |
|
} |
|
} |
|
} // anonymous namespace |
|
|
|
|
|
const std::string keys = |
|
"{ h help | | Print this help message }" |
|
"{ input | | Path to the input video file }" |
|
"{ output | | (Optional) path to output video file }" |
|
"{ detm | | Path to an ONNX SSD object detection model (.onnx) }" |
|
; |
|
|
|
int main(int argc, char *argv[]) |
|
{ |
|
cv::CommandLineParser cmd(argc, argv, keys); |
|
if (cmd.has("help")) { |
|
cmd.printMessage(); |
|
return 0; |
|
} |
|
|
|
// Prepare parameters first |
|
const std::string input = cmd.get<std::string>("input"); |
|
const std::string output = cmd.get<std::string>("output"); |
|
const auto obj_model_path = cmd.get<std::string>("detm"); |
|
|
|
auto obj_net = cv::gapi::onnx::Params<custom::ObjDetector>{obj_model_path} |
|
.cfgOutputLayers({"detection_output"}) |
|
.cfgPostProc({cv::GMatDesc{CV_32F, {1,1,200,7}}}, remap_ssd_ports); |
|
auto kernels = cv::gapi::kernels< custom::OCVGetSize |
|
, custom::OCVParseSSD |
|
, custom::OCVBBoxes>(); |
|
auto networks = cv::gapi::networks(obj_net); |
|
|
|
// Now build the graph |
|
cv::GMat in; |
|
auto blob = cv::gapi::infer<custom::ObjDetector>(in); |
|
auto rcs = custom::ParseSSD::on(blob, custom::GetSize::on(in)); |
|
auto out = cv::gapi::wip::draw::render3ch(in, custom::BBoxes::on(rcs)); |
|
cv::GStreamingCompiled pipeline = cv::GComputation(cv::GIn(in), cv::GOut(out)) |
|
.compileStreaming(cv::compile_args(kernels, networks)); |
|
|
|
auto inputs = cv::gin(cv::gapi::wip::make_src<cv::gapi::wip::GCaptureSource>(input)); |
|
|
|
// The execution part |
|
pipeline.setSource(std::move(inputs)); |
|
pipeline.start(); |
|
|
|
cv::VideoWriter writer; |
|
|
|
cv::Mat outMat; |
|
while (pipeline.pull(cv::gout(outMat))) { |
|
cv::imshow("Out", outMat); |
|
cv::waitKey(1); |
|
if (!output.empty()) { |
|
if (!writer.isOpened()) { |
|
const auto sz = cv::Size{outMat.cols, outMat.rows}; |
|
writer.open(output, cv::VideoWriter::fourcc('M','J','P','G'), 25.0, sz); |
|
CV_Assert(writer.isOpened()); |
|
} |
|
writer << outMat; |
|
} |
|
} |
|
return 0; |
|
}
|
|
|