Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

213 lines
7.6 KiB

#include <algorithm>
#include <iostream>
#include <sstream>
#include <opencv2/imgproc.hpp>
#include <opencv2/imgcodecs.hpp>
#include <opencv2/gapi.hpp>
#include <opencv2/gapi/core.hpp>
#include <opencv2/gapi/imgproc.hpp>
#include <opencv2/gapi/infer.hpp>
#include <opencv2/gapi/render.hpp>
#include <opencv2/gapi/infer/onnx.hpp>
#include <opencv2/gapi/cpu/gcpukernel.hpp>
#include <opencv2/gapi/streaming/cap.hpp>
#include <opencv2/highgui.hpp>
namespace custom {
G_API_NET(ObjDetector, <cv::GMat(cv::GMat)>, "object-detector");
using GDetections = cv::GArray<cv::Rect>;
using GSize = cv::GOpaque<cv::Size>;
using GPrims = cv::GArray<cv::gapi::wip::draw::Prim>;
G_API_OP(GetSize, <GSize(cv::GMat)>, "sample.custom.get-size") {
static cv::GOpaqueDesc outMeta(const cv::GMatDesc &) {
return cv::empty_gopaque_desc();
}
};
G_API_OP(ParseSSD, <GDetections(cv::GMat, GSize)>, "sample.custom.parse-ssd") {
static cv::GArrayDesc outMeta(const cv::GMatDesc &, const cv::GOpaqueDesc &) {
return cv::empty_array_desc();
}
};
G_API_OP(BBoxes, <GPrims(GDetections)>, "sample.custom.b-boxes") {
static cv::GArrayDesc outMeta(const cv::GArrayDesc &) {
return cv::empty_array_desc();
}
};
GAPI_OCV_KERNEL(OCVGetSize, GetSize) {
static void run(const cv::Mat &in, cv::Size &out) {
out = {in.cols, in.rows};
}
};
GAPI_OCV_KERNEL(OCVParseSSD, ParseSSD) {
static void run(const cv::Mat &in_ssd_result,
const cv::Size &in_parent_size,
std::vector<cv::Rect> &out_objects) {
const auto &in_ssd_dims = in_ssd_result.size;
CV_Assert(in_ssd_dims.dims() == 4u);
const int MAX_PROPOSALS = in_ssd_dims[2];
const int OBJECT_SIZE = in_ssd_dims[3];
CV_Assert(OBJECT_SIZE == 7); // fixed SSD object size
const cv::Rect surface({0,0}, in_parent_size);
out_objects.clear();
const float *data = in_ssd_result.ptr<float>();
for (int i = 0; i < MAX_PROPOSALS; i++) {
const float image_id = data[i * OBJECT_SIZE + 0];
const float label = data[i * OBJECT_SIZE + 1];
const float confidence = data[i * OBJECT_SIZE + 2];
const float rc_left = data[i * OBJECT_SIZE + 3];
const float rc_top = data[i * OBJECT_SIZE + 4];
const float rc_right = data[i * OBJECT_SIZE + 5];
const float rc_bottom = data[i * OBJECT_SIZE + 6];
(void) label; // unused
if (image_id < 0.f) {
break; // marks end-of-detections
}
if (confidence < 0.5f) {
continue; // skip objects with low confidence
}
// map relative coordinates to the original image scale
cv::Rect rc;
rc.x = static_cast<int>(rc_left * in_parent_size.width);
rc.y = static_cast<int>(rc_top * in_parent_size.height);
rc.width = static_cast<int>(rc_right * in_parent_size.width) - rc.x;
rc.height = static_cast<int>(rc_bottom * in_parent_size.height) - rc.y;
out_objects.emplace_back(rc & surface);
}
}
};
GAPI_OCV_KERNEL(OCVBBoxes, BBoxes) {
// This kernel converts the rectangles into G-API's
// rendering primitives
static void run(const std::vector<cv::Rect> &in_obj_rcs,
std::vector<cv::gapi::wip::draw::Prim> &out_prims) {
out_prims.clear();
const auto cvt = [](const cv::Rect &rc, const cv::Scalar &clr) {
return cv::gapi::wip::draw::Rect(rc, clr, 2);
};
for (auto &&rc : in_obj_rcs) {
out_prims.emplace_back(cvt(rc, CV_RGB(0,255,0))); // green
}
std::cout << "Detections:";
for (auto &&rc : in_obj_rcs) std::cout << ' ' << rc;
std::cout << std::endl;
}
};
} // namespace custom
namespace {
void remap_ssd_ports(const std::unordered_map<std::string, cv::Mat> &onnx,
std::unordered_map<std::string, cv::Mat> &gapi) {
// Assemble ONNX-processed outputs back to a single 1x1x200x7 blob
// to preserve compatibility with OpenVINO-based SSD pipeline
const cv::Mat &num_detections = onnx.at("num_detections:0");
const cv::Mat &detection_boxes = onnx.at("detection_boxes:0");
const cv::Mat &detection_scores = onnx.at("detection_scores:0");
const cv::Mat &detection_classes = onnx.at("detection_classes:0");
GAPI_Assert(num_detections.depth() == CV_32F);
GAPI_Assert(detection_boxes.depth() == CV_32F);
GAPI_Assert(detection_scores.depth() == CV_32F);
GAPI_Assert(detection_classes.depth() == CV_32F);
cv::Mat &ssd_output = gapi.at("detection_output");
const int num_objects = static_cast<int>(num_detections.ptr<float>()[0]);
const float *in_boxes = detection_boxes.ptr<float>();
const float *in_scores = detection_scores.ptr<float>();
const float *in_classes = detection_classes.ptr<float>();
float *ptr = ssd_output.ptr<float>();
for (int i = 0; i < num_objects; i++) {
ptr[0] = 0.f; // "image_id"
ptr[1] = in_classes[i]; // "label"
ptr[2] = in_scores[i]; // "confidence"
ptr[3] = in_boxes[4*i + 1]; // left
ptr[4] = in_boxes[4*i + 0]; // top
ptr[5] = in_boxes[4*i + 3]; // right
ptr[6] = in_boxes[4*i + 2]; // bottom
ptr += 7;
in_boxes += 4;
}
if (num_objects < ssd_output.size[2]-1) {
// put a -1 mark at the end of output blob if there is space left
ptr[0] = -1.f;
}
}
} // anonymous namespace
const std::string keys =
"{ h help | | Print this help message }"
"{ input | | Path to the input video file }"
"{ output | | (Optional) path to output video file }"
"{ detm | | Path to an ONNX SSD object detection model (.onnx) }"
;
int main(int argc, char *argv[])
{
cv::CommandLineParser cmd(argc, argv, keys);
if (cmd.has("help")) {
cmd.printMessage();
return 0;
}
// Prepare parameters first
const std::string input = cmd.get<std::string>("input");
const std::string output = cmd.get<std::string>("output");
const auto obj_model_path = cmd.get<std::string>("detm");
auto obj_net = cv::gapi::onnx::Params<custom::ObjDetector>{obj_model_path}
.cfgOutputLayers({"detection_output"})
.cfgPostProc({cv::GMatDesc{CV_32F, {1,1,200,7}}}, remap_ssd_ports);
auto kernels = cv::gapi::kernels< custom::OCVGetSize
, custom::OCVParseSSD
, custom::OCVBBoxes>();
auto networks = cv::gapi::networks(obj_net);
// Now build the graph
cv::GMat in;
auto blob = cv::gapi::infer<custom::ObjDetector>(in);
auto rcs = custom::ParseSSD::on(blob, custom::GetSize::on(in));
auto out = cv::gapi::wip::draw::render3ch(in, custom::BBoxes::on(rcs));
cv::GStreamingCompiled pipeline = cv::GComputation(cv::GIn(in), cv::GOut(out))
.compileStreaming(cv::compile_args(kernels, networks));
auto inputs = cv::gin(cv::gapi::wip::make_src<cv::gapi::wip::GCaptureSource>(input));
// The execution part
pipeline.setSource(std::move(inputs));
pipeline.start();
cv::VideoWriter writer;
cv::Mat outMat;
while (pipeline.pull(cv::gout(outMat))) {
cv::imshow("Out", outMat);
cv::waitKey(1);
if (!output.empty()) {
if (!writer.isOpened()) {
const auto sz = cv::Size{outMat.cols, outMat.rows};
writer.open(output, cv::VideoWriter::fourcc('M','J','P','G'), 25.0, sz);
CV_Assert(writer.isOpened());
}
writer << outMat;
}
}
return 0;
}