mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
264 lines
9.6 KiB
264 lines
9.6 KiB
#include <algorithm> |
|
#include <iostream> |
|
#include <sstream> |
|
|
|
#include <opencv2/imgproc.hpp> |
|
#include <opencv2/imgcodecs.hpp> |
|
#include <opencv2/gapi.hpp> |
|
#include <opencv2/gapi/core.hpp> |
|
#include <opencv2/gapi/imgproc.hpp> |
|
#include <opencv2/gapi/infer.hpp> |
|
#include <opencv2/gapi/render.hpp> |
|
#include <opencv2/gapi/infer/ie.hpp> |
|
#include <opencv2/gapi/cpu/gcpukernel.hpp> |
|
#include <opencv2/gapi/streaming/cap.hpp> |
|
#include <opencv2/highgui.hpp> |
|
|
|
const std::string keys = |
|
"{ h help | | Print this help message }" |
|
"{ input | | Path to the input video file }" |
|
"{ facem | face-detection-adas-0001.xml | Path to OpenVINO IE face detection model (.xml) }" |
|
"{ faced | CPU | Target device for face detection model (e.g. CPU, GPU, VPU, ...) }" |
|
"{ r roi | -1,-1,-1,-1 | Region of interest (ROI) to use for inference. Identified automatically when not set }"; |
|
|
|
namespace { |
|
|
|
std::string weights_path(const std::string &model_path) { |
|
const auto EXT_LEN = 4u; |
|
const auto sz = model_path.size(); |
|
CV_Assert(sz > EXT_LEN); |
|
|
|
auto ext = model_path.substr(sz - EXT_LEN); |
|
std::transform(ext.begin(), ext.end(), ext.begin(), [](unsigned char c){ |
|
return static_cast<unsigned char>(std::tolower(c)); |
|
}); |
|
CV_Assert(ext == ".xml"); |
|
return model_path.substr(0u, sz - EXT_LEN) + ".bin"; |
|
} |
|
|
|
cv::util::optional<cv::Rect> parse_roi(const std::string &rc) { |
|
cv::Rect rv; |
|
char delim[3]; |
|
|
|
std::stringstream is(rc); |
|
is >> rv.x >> delim[0] >> rv.y >> delim[1] >> rv.width >> delim[2] >> rv.height; |
|
if (is.bad()) { |
|
return cv::util::optional<cv::Rect>(); // empty value |
|
} |
|
const auto is_delim = [](char c) { |
|
return c == ','; |
|
}; |
|
if (!std::all_of(std::begin(delim), std::end(delim), is_delim)) { |
|
return cv::util::optional<cv::Rect>(); // empty value |
|
|
|
} |
|
if (rv.x < 0 || rv.y < 0 || rv.width <= 0 || rv.height <= 0) { |
|
return cv::util::optional<cv::Rect>(); // empty value |
|
} |
|
return cv::util::make_optional(std::move(rv)); |
|
} |
|
|
|
} // namespace |
|
|
|
namespace custom { |
|
|
|
G_API_NET(FaceDetector, <cv::GMat(cv::GMat)>, "face-detector"); |
|
|
|
using GDetections = cv::GArray<cv::Rect>; |
|
using GRect = cv::GOpaque<cv::Rect>; |
|
using GSize = cv::GOpaque<cv::Size>; |
|
using GPrims = cv::GArray<cv::gapi::wip::draw::Prim>; |
|
|
|
G_API_OP(GetSize, <GSize(cv::GMat)>, "sample.custom.get-size") { |
|
static cv::GOpaqueDesc outMeta(const cv::GMatDesc &) { |
|
return cv::empty_gopaque_desc(); |
|
} |
|
}; |
|
|
|
G_API_OP(LocateROI, <GRect(cv::GMat)>, "sample.custom.locate-roi") { |
|
static cv::GOpaqueDesc outMeta(const cv::GMatDesc &) { |
|
return cv::empty_gopaque_desc(); |
|
} |
|
}; |
|
|
|
G_API_OP(ParseSSD, <GDetections(cv::GMat, GRect, GSize)>, "sample.custom.parse-ssd") { |
|
static cv::GArrayDesc outMeta(const cv::GMatDesc &, const cv::GOpaqueDesc &, const cv::GOpaqueDesc &) { |
|
return cv::empty_array_desc(); |
|
} |
|
}; |
|
|
|
G_API_OP(BBoxes, <GPrims(GDetections, GRect)>, "sample.custom.b-boxes") { |
|
static cv::GArrayDesc outMeta(const cv::GArrayDesc &, const cv::GOpaqueDesc &) { |
|
return cv::empty_array_desc(); |
|
} |
|
}; |
|
|
|
GAPI_OCV_KERNEL(OCVGetSize, GetSize) { |
|
static void run(const cv::Mat &in, cv::Size &out) { |
|
out = {in.cols, in.rows}; |
|
} |
|
}; |
|
|
|
GAPI_OCV_KERNEL(OCVLocateROI, LocateROI) { |
|
// This is the place where we can run extra analytics |
|
// on the input image frame and select the ROI (region |
|
// of interest) where we want to detect our objects (or |
|
// run any other inference). |
|
// |
|
// Currently it doesn't do anything intelligent, |
|
// but only crops the input image to square (this is |
|
// the most convenient aspect ratio for detectors to use) |
|
|
|
static void run(const cv::Mat &in_mat, cv::Rect &out_rect) { |
|
|
|
// Identify the central point & square size (- some padding) |
|
const auto center = cv::Point{in_mat.cols/2, in_mat.rows/2}; |
|
auto sqside = std::min(in_mat.cols, in_mat.rows); |
|
|
|
// Now build the central square ROI |
|
out_rect = cv::Rect{ center.x - sqside/2 |
|
, center.y - sqside/2 |
|
, sqside |
|
, sqside |
|
}; |
|
} |
|
}; |
|
|
|
GAPI_OCV_KERNEL(OCVParseSSD, ParseSSD) { |
|
static void run(const cv::Mat &in_ssd_result, |
|
const cv::Rect &in_roi, |
|
const cv::Size &in_parent_size, |
|
std::vector<cv::Rect> &out_objects) { |
|
const auto &in_ssd_dims = in_ssd_result.size; |
|
CV_Assert(in_ssd_dims.dims() == 4u); |
|
|
|
const int MAX_PROPOSALS = in_ssd_dims[2]; |
|
const int OBJECT_SIZE = in_ssd_dims[3]; |
|
CV_Assert(OBJECT_SIZE == 7); // fixed SSD object size |
|
|
|
const cv::Size up_roi = in_roi.size(); |
|
const cv::Rect surface({0,0}, in_parent_size); |
|
|
|
out_objects.clear(); |
|
|
|
const float *data = in_ssd_result.ptr<float>(); |
|
for (int i = 0; i < MAX_PROPOSALS; i++) { |
|
const float image_id = data[i * OBJECT_SIZE + 0]; |
|
const float label = data[i * OBJECT_SIZE + 1]; |
|
const float confidence = data[i * OBJECT_SIZE + 2]; |
|
const float rc_left = data[i * OBJECT_SIZE + 3]; |
|
const float rc_top = data[i * OBJECT_SIZE + 4]; |
|
const float rc_right = data[i * OBJECT_SIZE + 5]; |
|
const float rc_bottom = data[i * OBJECT_SIZE + 6]; |
|
(void) label; // unused |
|
|
|
if (image_id < 0.f) { |
|
break; // marks end-of-detections |
|
} |
|
if (confidence < 0.5f) { |
|
continue; // skip objects with low confidence |
|
} |
|
|
|
// map relative coordinates to the original image scale |
|
// taking the ROI into account |
|
cv::Rect rc; |
|
rc.x = static_cast<int>(rc_left * up_roi.width); |
|
rc.y = static_cast<int>(rc_top * up_roi.height); |
|
rc.width = static_cast<int>(rc_right * up_roi.width) - rc.x; |
|
rc.height = static_cast<int>(rc_bottom * up_roi.height) - rc.y; |
|
rc.x += in_roi.x; |
|
rc.y += in_roi.y; |
|
out_objects.emplace_back(rc & surface); |
|
} |
|
} |
|
}; |
|
|
|
GAPI_OCV_KERNEL(OCVBBoxes, BBoxes) { |
|
// This kernel converts the rectangles into G-API's |
|
// rendering primitives |
|
static void run(const std::vector<cv::Rect> &in_face_rcs, |
|
const cv::Rect &in_roi, |
|
std::vector<cv::gapi::wip::draw::Prim> &out_prims) { |
|
out_prims.clear(); |
|
const auto cvt = [](const cv::Rect &rc, const cv::Scalar &clr) { |
|
return cv::gapi::wip::draw::Rect(rc, clr, 2); |
|
}; |
|
out_prims.emplace_back(cvt(in_roi, CV_RGB(0,255,255))); // cyan |
|
for (auto &&rc : in_face_rcs) { |
|
out_prims.emplace_back(cvt(rc, CV_RGB(0,255,0))); // green |
|
} |
|
} |
|
}; |
|
|
|
} // namespace custom |
|
|
|
int main(int argc, char *argv[]) |
|
{ |
|
cv::CommandLineParser cmd(argc, argv, keys); |
|
if (cmd.has("help")) { |
|
cmd.printMessage(); |
|
return 0; |
|
} |
|
|
|
// Prepare parameters first |
|
const std::string input = cmd.get<std::string>("input"); |
|
const auto opt_roi = parse_roi(cmd.get<std::string>("roi")); |
|
|
|
const auto face_model_path = cmd.get<std::string>("facem"); |
|
auto face_net = cv::gapi::ie::Params<custom::FaceDetector> { |
|
face_model_path, // path to topology IR |
|
weights_path(face_model_path), // path to weights |
|
cmd.get<std::string>("faced"), // device specifier |
|
}; |
|
auto kernels = cv::gapi::kernels |
|
< custom::OCVGetSize |
|
, custom::OCVLocateROI |
|
, custom::OCVParseSSD |
|
, custom::OCVBBoxes>(); |
|
auto networks = cv::gapi::networks(face_net); |
|
|
|
// Now build the graph. The graph structure may vary |
|
// pased on the input parameters |
|
cv::GStreamingCompiled pipeline; |
|
auto inputs = cv::gin(cv::gapi::wip::make_src<cv::gapi::wip::GCaptureSource>(input)); |
|
|
|
if (opt_roi.has_value()) { |
|
// Use the value provided by user |
|
std::cout << "Will run inference for static region " |
|
<< opt_roi.value() |
|
<< " only" |
|
<< std::endl; |
|
cv::GMat in; |
|
cv::GOpaque<cv::Rect> in_roi; |
|
auto blob = cv::gapi::infer<custom::FaceDetector>(in_roi, in); |
|
auto rcs = custom::ParseSSD::on(blob, in_roi, custom::GetSize::on(in)); |
|
auto out = cv::gapi::wip::draw::render3ch(in, custom::BBoxes::on(rcs, in_roi)); |
|
pipeline = cv::GComputation(cv::GIn(in, in_roi), cv::GOut(out)) |
|
.compileStreaming(cv::compile_args(kernels, networks)); |
|
|
|
// Since the ROI to detect is manual, make it part of the input vector |
|
inputs.push_back(cv::gin(opt_roi.value())[0]); |
|
} else { |
|
// Automatically detect ROI to infer. Make it output parameter |
|
std::cout << "ROI is not set or invalid. Locating it automatically" |
|
<< std::endl; |
|
cv::GMat in; |
|
cv::GOpaque<cv::Rect> roi = custom::LocateROI::on(in); |
|
auto blob = cv::gapi::infer<custom::FaceDetector>(roi, in); |
|
auto rcs = custom::ParseSSD::on(blob, roi, custom::GetSize::on(in)); |
|
auto out = cv::gapi::wip::draw::render3ch(in, custom::BBoxes::on(rcs, roi)); |
|
pipeline = cv::GComputation(cv::GIn(in), cv::GOut(out)) |
|
.compileStreaming(cv::compile_args(kernels, networks)); |
|
} |
|
|
|
// The execution part |
|
pipeline.setSource(std::move(inputs)); |
|
pipeline.start(); |
|
|
|
cv::Mat out; |
|
while (pipeline.pull(cv::gout(out))) { |
|
cv::imshow("Out", out); |
|
cv::waitKey(1); |
|
} |
|
return 0; |
|
}
|
|
|