mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
371 lines
11 KiB
371 lines
11 KiB
#include "opencv2/objdetect/objdetect.hpp" |
|
#include "opencv2/highgui/highgui.hpp" |
|
#include "opencv2/imgproc/imgproc.hpp" |
|
#include "opencv2/ocl/ocl.hpp" |
|
#include <iostream> |
|
#include <stdio.h> |
|
|
|
#if defined(_MSC_VER) && (_MSC_VER >= 1700) |
|
# include <thread> |
|
#endif |
|
|
|
using namespace std; |
|
using namespace cv; |
|
|
|
#define LOOP_NUM 10 |
|
#define MAX_THREADS 10 |
|
|
|
|
|
///////////////////////////single-threading faces detecting/////////////////////////////// |
|
|
|
const static Scalar colors[] = { CV_RGB(0,0,255), |
|
CV_RGB(0,128,255), |
|
CV_RGB(0,255,255), |
|
CV_RGB(0,255,0), |
|
CV_RGB(255,128,0), |
|
CV_RGB(255,255,0), |
|
CV_RGB(255,0,0), |
|
CV_RGB(255,0,255) |
|
} ; |
|
|
|
|
|
int64 work_begin[MAX_THREADS] = {0}; |
|
int64 work_end[MAX_THREADS] = {0}; |
|
string inputName, outputName, cascadeName; |
|
|
|
static void workBegin(int i = 0) |
|
{ |
|
work_begin[i] = getTickCount(); |
|
} |
|
|
|
static void workEnd(int i = 0) |
|
{ |
|
work_end[i] += (getTickCount() - work_begin[i]); |
|
} |
|
|
|
static double getTime(int i = 0) |
|
{ |
|
return work_end[i] /getTickFrequency() * 1000.; |
|
} |
|
|
|
|
|
static void detect( Mat& img, vector<Rect>& faces, |
|
ocl::OclCascadeClassifier& cascade, |
|
double scale, bool calTime); |
|
|
|
|
|
static void detectCPU( Mat& img, vector<Rect>& faces, |
|
CascadeClassifier& cascade, |
|
double scale, bool calTime); |
|
|
|
|
|
static void Draw(Mat& img, vector<Rect>& faces, double scale); |
|
|
|
|
|
// This function test if gpu_rst matches cpu_rst. |
|
// If the two vectors are not equal, it will return the difference in vector size |
|
// Else if will return (total diff of each cpu and gpu rects covered pixels)/(total cpu rects covered pixels) |
|
double checkRectSimilarity(Size sz, vector<Rect>& cpu_rst, vector<Rect>& gpu_rst); |
|
|
|
static int facedetect_one_thread(bool useCPU, double scale ) |
|
{ |
|
CvCapture* capture = 0; |
|
Mat frame, frameCopy, image; |
|
|
|
ocl::OclCascadeClassifier cascade; |
|
CascadeClassifier cpu_cascade; |
|
|
|
if( !cascade.load( cascadeName ) || !cpu_cascade.load(cascadeName) ) |
|
{ |
|
cout << "ERROR: Could not load classifier cascade: " << cascadeName << endl; |
|
return EXIT_FAILURE; |
|
} |
|
|
|
if( inputName.empty() ) |
|
{ |
|
capture = cvCaptureFromCAM(0); |
|
if(!capture) |
|
cout << "Capture from CAM 0 didn't work" << endl; |
|
} |
|
else |
|
{ |
|
image = imread( inputName, CV_LOAD_IMAGE_COLOR ); |
|
if( image.empty() ) |
|
{ |
|
capture = cvCaptureFromAVI( inputName.c_str() ); |
|
if(!capture) |
|
cout << "Capture from AVI didn't work" << endl; |
|
return EXIT_FAILURE; |
|
} |
|
} |
|
|
|
if( capture ) |
|
{ |
|
cout << "In capture ..." << endl; |
|
for(;;) |
|
{ |
|
IplImage* iplImg = cvQueryFrame( capture ); |
|
frame = iplImg; |
|
vector<Rect> faces; |
|
if( frame.empty() ) |
|
break; |
|
if( iplImg->origin == IPL_ORIGIN_TL ) |
|
frame.copyTo( frameCopy ); |
|
else |
|
flip( frame, frameCopy, 0 ); |
|
|
|
if(useCPU) |
|
detectCPU(frameCopy, faces, cpu_cascade, scale, false); |
|
else |
|
detect(frameCopy, faces, cascade, scale, false); |
|
|
|
Draw(frameCopy, faces, scale); |
|
if( waitKey( 10 ) >= 0 ) |
|
break; |
|
} |
|
cvReleaseCapture( &capture ); |
|
} |
|
else |
|
{ |
|
cout << "In image read " << image.size() << endl; |
|
vector<Rect> faces; |
|
vector<Rect> ref_rst; |
|
double accuracy = 0.; |
|
cout << "loops: "; |
|
for(int i = 0; i <= LOOP_NUM; i++) |
|
{ |
|
cout << i << ", "; |
|
if(useCPU) |
|
detectCPU(image, faces, cpu_cascade, scale, i!=0); |
|
else |
|
{ |
|
detect(image, faces, cascade, scale, i!=0); |
|
if(i == 0) |
|
{ |
|
detectCPU(image, ref_rst, cpu_cascade, scale, false); |
|
accuracy = checkRectSimilarity(image.size(), ref_rst, faces); |
|
} |
|
} |
|
} |
|
cout << "done!" << endl; |
|
if (useCPU) |
|
cout << "average CPU time (noCamera) : "; |
|
else |
|
cout << "average GPU time (noCamera) : "; |
|
cout << getTime() / LOOP_NUM << " ms" << endl; |
|
cout << "accuracy value: " << accuracy <<endl; |
|
|
|
Draw(image, faces, scale); |
|
waitKey(0); |
|
} |
|
|
|
cvDestroyWindow("result"); |
|
std::cout<< "single-threaded sample has finished" <<std::endl; |
|
return 0; |
|
} |
|
|
|
///////////////////////////////////////detectfaces with multithreading//////////////////////////////////////////// |
|
#if defined(_MSC_VER) && (_MSC_VER >= 1700) |
|
|
|
static void detectFaces(std::string fileName) |
|
{ |
|
ocl::OclCascadeClassifier cascade; |
|
if(!cascade.load(cascadeName)) |
|
{ |
|
std::cout << "ERROR: Could not load classifier cascade: " << cascadeName << std::endl; |
|
return; |
|
} |
|
|
|
Mat img = imread(fileName, CV_LOAD_IMAGE_COLOR); |
|
if (img.empty()) |
|
{ |
|
std::cout << "cann't open file " + fileName <<std::endl; |
|
return; |
|
} |
|
|
|
ocl::oclMat d_img; |
|
d_img.upload(img); |
|
|
|
std::vector<Rect> oclfaces; |
|
cascade.detectMultiScale(d_img, oclfaces, 1.1, 3, 0|CV_HAAR_SCALE_IMAGE, Size(30, 30), Size(0, 0)); |
|
|
|
for(unsigned int i = 0; i<oclfaces.size(); i++) |
|
rectangle(img, Point(oclfaces[i].x, oclfaces[i].y), Point(oclfaces[i].x + oclfaces[i].width, oclfaces[i].y + oclfaces[i].height), colors[i%8], 3); |
|
|
|
std::string::size_type pos = outputName.rfind('.'); |
|
std::string outputNameTid = outputName + '-' + std::to_string(_threadid); |
|
if(pos == std::string::npos) |
|
{ |
|
std::cout << "Invalid output file name: " << outputName << std::endl; |
|
} |
|
else |
|
{ |
|
outputNameTid = outputName.substr(0, pos) + "_" + std::to_string(_threadid) + outputName.substr(pos); |
|
imwrite(outputNameTid, img); |
|
} |
|
imshow(outputNameTid, img); |
|
waitKey(0); |
|
} |
|
|
|
static void facedetect_multithreading(int nthreads) |
|
{ |
|
int thread_number = MAX_THREADS < nthreads ? MAX_THREADS : nthreads; |
|
std::vector<std::thread> threads; |
|
for(int i = 0; i<thread_number; i++) |
|
threads.push_back(std::thread(detectFaces, inputName)); |
|
for(int i = 0; i<thread_number; i++) |
|
threads[i].join(); |
|
} |
|
#endif |
|
|
|
int main( int argc, const char** argv ) |
|
{ |
|
|
|
const char* keys = |
|
"{ h | help | false | print help message }" |
|
"{ i | input | | specify input image }" |
|
"{ t | template | haarcascade_frontalface_alt.xml |" |
|
" specify template file path }" |
|
"{ c | scale | 1.0 | scale image }" |
|
"{ s | use_cpu | false | use cpu or gpu to process the image }" |
|
"{ o | output | facedetect_output.jpg |" |
|
" specify output image save path(only works when input is images) }" |
|
"{ n | thread_num | 1 | set number of threads >= 1 }"; |
|
|
|
CommandLineParser cmd(argc, argv, keys); |
|
if (cmd.get<bool>("help")) |
|
{ |
|
cout << "Usage : facedetect [options]" << endl; |
|
cout << "Available options:" << endl; |
|
cmd.printParams(); |
|
return EXIT_SUCCESS; |
|
} |
|
bool useCPU = cmd.get<bool>("s"); |
|
inputName = cmd.get<string>("i"); |
|
outputName = cmd.get<string>("o"); |
|
cascadeName = cmd.get<string>("t"); |
|
double scale = cmd.get<double>("c"); |
|
int n = cmd.get<int>("n"); |
|
|
|
if(n > 1) |
|
{ |
|
#if defined(_MSC_VER) && (_MSC_VER >= 1700) |
|
std::cout<<"multi-threaded sample is running" <<std::endl; |
|
facedetect_multithreading(n); |
|
std::cout<<"multi-threaded sample has finished" <<std::endl; |
|
return 0; |
|
#else |
|
std::cout << "std::thread is not supported, running a single-threaded version" << std::endl; |
|
#endif |
|
} |
|
if (n<0) |
|
std::cout<<"incorrect number of threads:" << n << ", running a single-threaded version" <<std::endl; |
|
else |
|
std::cout<<"single-threaded sample is running" <<std::endl; |
|
return facedetect_one_thread(useCPU, scale); |
|
|
|
} |
|
|
|
void detect( Mat& img, vector<Rect>& faces, |
|
ocl::OclCascadeClassifier& cascade, |
|
double scale, bool calTime) |
|
{ |
|
ocl::oclMat image(img); |
|
ocl::oclMat gray, smallImg( cvRound (img.rows/scale), cvRound(img.cols/scale), CV_8UC1 ); |
|
if(calTime) workBegin(); |
|
ocl::cvtColor( image, gray, CV_BGR2GRAY ); |
|
ocl::resize( gray, smallImg, smallImg.size(), 0, 0, INTER_LINEAR ); |
|
ocl::equalizeHist( smallImg, smallImg ); |
|
|
|
cascade.detectMultiScale( smallImg, faces, 1.1, |
|
3, 0 |
|
|CV_HAAR_SCALE_IMAGE |
|
, Size(30,30), Size(0, 0) ); |
|
if(calTime) workEnd(); |
|
} |
|
|
|
|
|
void detectCPU( Mat& img, vector<Rect>& faces, |
|
CascadeClassifier& cascade, |
|
double scale, bool calTime) |
|
{ |
|
if(calTime) workBegin(); |
|
Mat cpu_gray, cpu_smallImg( cvRound (img.rows/scale), cvRound(img.cols/scale), CV_8UC1 ); |
|
cvtColor(img, cpu_gray, CV_BGR2GRAY); |
|
resize(cpu_gray, cpu_smallImg, cpu_smallImg.size(), 0, 0, INTER_LINEAR); |
|
equalizeHist(cpu_smallImg, cpu_smallImg); |
|
cascade.detectMultiScale(cpu_smallImg, faces, 1.1, |
|
3, 0 | CV_HAAR_SCALE_IMAGE, |
|
Size(30, 30), Size(0, 0)); |
|
if(calTime) workEnd(); |
|
} |
|
|
|
|
|
void Draw(Mat& img, vector<Rect>& faces, double scale) |
|
{ |
|
int i = 0; |
|
for( vector<Rect>::const_iterator r = faces.begin(); r != faces.end(); r++, i++ ) |
|
{ |
|
Point center; |
|
Scalar color = colors[i%8]; |
|
int radius; |
|
center.x = cvRound((r->x + r->width*0.5)*scale); |
|
center.y = cvRound((r->y + r->height*0.5)*scale); |
|
radius = cvRound((r->width + r->height)*0.25*scale); |
|
circle( img, center, radius, color, 3, 8, 0 ); |
|
} |
|
imwrite( outputName, img ); |
|
if(abs(scale-1.0)>.001) |
|
{ |
|
resize(img, img, Size((int)(img.cols/scale), (int)(img.rows/scale))); |
|
} |
|
imshow( "result", img ); |
|
|
|
} |
|
|
|
|
|
double checkRectSimilarity(Size sz, vector<Rect>& ob1, vector<Rect>& ob2) |
|
{ |
|
double final_test_result = 0.0; |
|
size_t sz1 = ob1.size(); |
|
size_t sz2 = ob2.size(); |
|
|
|
if(sz1 != sz2) |
|
{ |
|
return sz1 > sz2 ? (double)(sz1 - sz2) : (double)(sz2 - sz1); |
|
} |
|
else |
|
{ |
|
if(sz1==0 && sz2==0) |
|
return 0; |
|
Mat cpu_result(sz, CV_8UC1); |
|
cpu_result.setTo(0); |
|
|
|
for(vector<Rect>::const_iterator r = ob1.begin(); r != ob1.end(); r++) |
|
{ |
|
Mat cpu_result_roi(cpu_result, *r); |
|
cpu_result_roi.setTo(1); |
|
cpu_result.copyTo(cpu_result); |
|
} |
|
int cpu_area = countNonZero(cpu_result > 0); |
|
|
|
|
|
Mat gpu_result(sz, CV_8UC1); |
|
gpu_result.setTo(0); |
|
for(vector<Rect>::const_iterator r2 = ob2.begin(); r2 != ob2.end(); r2++) |
|
{ |
|
cv::Mat gpu_result_roi(gpu_result, *r2); |
|
gpu_result_roi.setTo(1); |
|
gpu_result.copyTo(gpu_result); |
|
} |
|
|
|
Mat result_; |
|
multiply(cpu_result, gpu_result, result_); |
|
int result = countNonZero(result_ > 0); |
|
if(cpu_area!=0 && result!=0) |
|
final_test_result = 1.0 - (double)result/(double)cpu_area; |
|
else if(cpu_area==0 && result!=0) |
|
final_test_result = -1; |
|
} |
|
return final_test_result; |
|
}
|
|
|