mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
279 lines
7.9 KiB
279 lines
7.9 KiB
#include "perf_precomp.hpp" |
|
|
|
#define GPU_PERF_TEST_P(fixture, name, params) \ |
|
class fixture##_##name : public fixture {\ |
|
public:\ |
|
fixture##_##name() {}\ |
|
protected:\ |
|
virtual void __cpu();\ |
|
virtual void __gpu();\ |
|
virtual void PerfTestBody();\ |
|
};\ |
|
TEST_P(fixture##_##name, name /*perf*/){ RunPerfTestBody(); if (PERF_RUN_GPU()) __gpu(); else __cpu();}\ |
|
INSTANTIATE_TEST_CASE_P(/*none*/, fixture##_##name, params);\ |
|
void fixture##_##name::PerfTestBody() |
|
|
|
#define RUN_CPU(fixture, name)\ |
|
void fixture##_##name::__cpu() |
|
|
|
#define RUN_GPU(fixture, name)\ |
|
void fixture##_##name::__gpu() |
|
|
|
#define NO_CPU(fixture, name)\ |
|
void fixture##_##name::__cpu() { FAIL() << "No such CPU implementation analogy";} |
|
|
|
namespace { |
|
struct DetectionLess |
|
{ |
|
bool operator()(const cv::gpu::SoftCascade::Detection& a, |
|
const cv::gpu::SoftCascade::Detection& b) const |
|
{ |
|
if (a.x != b.x) return a.x < b.x; |
|
else if (a.y != b.y) return a.y < b.y; |
|
else if (a.w != b.w) return a.w < b.w; |
|
else return a.h < b.h; |
|
} |
|
|
|
// bool operator()(const cv::SoftCascade::Detection& a, |
|
// const cv::SoftCascade::Detection& b) const |
|
// { |
|
// const cv::Rect& ra = a.rect; |
|
// const cv::Rect& rb = b.rect; |
|
|
|
// if (ra.x != rb.x) return ra.x < rb.x; |
|
// else if (ra.y != rb.y) return ra.y < rb.y; |
|
// else if (ra.width != rb.width) return ra.width < rb.width; |
|
// else return ra.height < rb.height; |
|
// } |
|
}; |
|
|
|
cv::Mat sortDetections(cv::gpu::GpuMat& objects) |
|
{ |
|
cv::Mat detections(objects); |
|
|
|
typedef cv::gpu::SoftCascade::Detection Detection; |
|
Detection* begin = (Detection*)(detections.ptr<char>(0)); |
|
Detection* end = (Detection*)(detections.ptr<char>(0) + detections.cols); |
|
std::sort(begin, end, DetectionLess()); |
|
|
|
return detections; |
|
} |
|
} |
|
|
|
|
|
typedef std::tr1::tuple<std::string, std::string> fixture_t; |
|
typedef perf::TestBaseWithParam<fixture_t> SoftCascadeTest; |
|
|
|
GPU_PERF_TEST_P(SoftCascadeTest, detect, |
|
testing::Combine( |
|
testing::Values(std::string("cv/cascadeandhog/sc_cvpr_2012_to_opencv.xml")), |
|
testing::Values(std::string("cv/cascadeandhog/bahnhof/image_00000000_0.png")))) |
|
{ } |
|
|
|
RUN_GPU(SoftCascadeTest, detect) |
|
{ |
|
cv::Mat cpu = readImage (GET_PARAM(1)); |
|
ASSERT_FALSE(cpu.empty()); |
|
cv::gpu::GpuMat colored(cpu); |
|
|
|
cv::gpu::SoftCascade cascade; |
|
ASSERT_TRUE(cascade.load(perf::TestBase::getDataPath(GET_PARAM(0)))); |
|
|
|
cv::gpu::GpuMat objectBoxes(1, 10000 * sizeof(cv::gpu::SoftCascade::Detection), CV_8UC1), rois(cascade.getRoiSize(), CV_8UC1), trois; |
|
rois.setTo(1); |
|
cv::gpu::transpose(rois, trois); |
|
|
|
cv::gpu::GpuMat curr = objectBoxes; |
|
cascade.detectMultiScale(colored, trois, curr); |
|
|
|
TEST_CYCLE() |
|
{ |
|
curr = objectBoxes; |
|
cascade.detectMultiScale(colored, trois, curr); |
|
} |
|
|
|
SANITY_CHECK(sortDetections(curr)); |
|
} |
|
|
|
NO_CPU(SoftCascadeTest, detect) |
|
|
|
// RUN_CPU(SoftCascadeTest, detect) |
|
// { |
|
// cv::Mat colored = readImage(GET_PARAM(1)); |
|
// ASSERT_FALSE(colored.empty()); |
|
|
|
// cv::SoftCascade cascade; |
|
// ASSERT_TRUE(cascade.load(getDataPath(GET_PARAM(0)))); |
|
|
|
// std::vector<cv::Rect> rois; |
|
|
|
// typedef cv::SoftCascade::Detection Detection; |
|
// std::vector<Detection>objects; |
|
// cascade.detectMultiScale(colored, rois, objects); |
|
|
|
// TEST_CYCLE() |
|
// { |
|
// cascade.detectMultiScale(colored, rois, objects); |
|
// } |
|
|
|
// std::sort(objects.begin(), objects.end(), DetectionLess()); |
|
// SANITY_CHECK(objects); |
|
// } |
|
|
|
static cv::Rect getFromTable(int idx) |
|
{ |
|
static const cv::Rect rois[] = |
|
{ |
|
cv::Rect( 65, 20, 35, 80), |
|
cv::Rect( 95, 35, 45, 40), |
|
cv::Rect( 45, 35, 45, 40), |
|
cv::Rect( 25, 27, 50, 45), |
|
cv::Rect(100, 50, 45, 40), |
|
|
|
cv::Rect( 60, 30, 45, 40), |
|
cv::Rect( 40, 55, 50, 40), |
|
cv::Rect( 48, 37, 72, 80), |
|
cv::Rect( 48, 32, 85, 58), |
|
cv::Rect( 48, 0, 32, 27) |
|
}; |
|
|
|
return rois[idx]; |
|
} |
|
|
|
typedef std::tr1::tuple<std::string, std::string, int> roi_fixture_t; |
|
typedef perf::TestBaseWithParam<roi_fixture_t> SoftCascadeTestRoi; |
|
|
|
GPU_PERF_TEST_P(SoftCascadeTestRoi, detectInRoi, |
|
testing::Combine( |
|
testing::Values(std::string("cv/cascadeandhog/sc_cvpr_2012_to_opencv.xml")), |
|
testing::Values(std::string("cv/cascadeandhog/bahnhof/image_00000000_0.png")), |
|
testing::Range(0, 5))) |
|
{} |
|
|
|
RUN_GPU(SoftCascadeTestRoi, detectInRoi) |
|
{ |
|
cv::Mat cpu = readImage (GET_PARAM(1)); |
|
ASSERT_FALSE(cpu.empty()); |
|
cv::gpu::GpuMat colored(cpu); |
|
|
|
cv::gpu::SoftCascade cascade; |
|
ASSERT_TRUE(cascade.load(perf::TestBase::getDataPath(GET_PARAM(0)))); |
|
|
|
cv::gpu::GpuMat objectBoxes(1, 16384 * 20, CV_8UC1), rois(cascade.getRoiSize(), CV_8UC1); |
|
rois.setTo(0); |
|
|
|
int nroi = GET_PARAM(2); |
|
cv::RNG rng; |
|
for (int i = 0; i < nroi; ++i) |
|
{ |
|
cv::Rect r = getFromTable(rng(10)); |
|
cv::gpu::GpuMat sub(rois, r); |
|
sub.setTo(1); |
|
} |
|
|
|
cv::gpu::GpuMat trois; |
|
cv::gpu::transpose(rois, trois); |
|
|
|
cv::gpu::GpuMat curr = objectBoxes; |
|
cascade.detectMultiScale(colored, trois, curr); |
|
|
|
TEST_CYCLE() |
|
{ |
|
curr = objectBoxes; |
|
cascade.detectMultiScale(colored, trois, curr); |
|
} |
|
|
|
SANITY_CHECK(sortDetections(curr)); |
|
} |
|
|
|
NO_CPU(SoftCascadeTestRoi, detectInRoi) |
|
|
|
|
|
GPU_PERF_TEST_P(SoftCascadeTestRoi, detectEachRoi, |
|
testing::Combine( |
|
testing::Values(std::string("cv/cascadeandhog/sc_cvpr_2012_to_opencv.xml")), |
|
testing::Values(std::string("cv/cascadeandhog/bahnhof/image_00000000_0.png")), |
|
testing::Range(0, 10))) |
|
{} |
|
|
|
RUN_GPU(SoftCascadeTestRoi, detectEachRoi) |
|
{ |
|
cv::Mat cpu = readImage (GET_PARAM(1)); |
|
ASSERT_FALSE(cpu.empty()); |
|
cv::gpu::GpuMat colored(cpu); |
|
|
|
cv::gpu::SoftCascade cascade; |
|
ASSERT_TRUE(cascade.load(perf::TestBase::getDataPath(GET_PARAM(0)))); |
|
|
|
cv::gpu::GpuMat objectBoxes(1, 16384 * 20, CV_8UC1), rois(cascade.getRoiSize(), CV_8UC1); |
|
rois.setTo(0); |
|
|
|
int idx = GET_PARAM(2); |
|
cv::Rect r = getFromTable(idx); |
|
cv::gpu::GpuMat sub(rois, r); |
|
sub.setTo(1); |
|
|
|
cv::gpu::GpuMat curr = objectBoxes; |
|
cv::gpu::GpuMat trois; |
|
cv::gpu::transpose(rois, trois); |
|
|
|
cascade.detectMultiScale(colored, trois, curr); |
|
|
|
TEST_CYCLE() |
|
{ |
|
curr = objectBoxes; |
|
cascade.detectMultiScale(colored, trois, curr); |
|
} |
|
|
|
SANITY_CHECK(sortDetections(curr)); |
|
} |
|
|
|
NO_CPU(SoftCascadeTestRoi, detectEachRoi) |
|
|
|
GPU_PERF_TEST_P(SoftCascadeTest, detectOnIntegral, |
|
testing::Combine( |
|
testing::Values(std::string("cv/cascadeandhog/sc_cvpr_2012_to_opencv.xml")), |
|
testing::Values(std::string("cv/cascadeandhog/integrals.xml")))) |
|
{ } |
|
|
|
static std::string itoa(long i) |
|
{ |
|
static char s[65]; |
|
sprintf(s, "%ld", i); |
|
return std::string(s); |
|
} |
|
|
|
RUN_GPU(SoftCascadeTest, detectOnIntegral) |
|
{ |
|
cv::FileStorage fs(perf::TestBase::getDataPath(GET_PARAM(1)), cv::FileStorage::READ); |
|
ASSERT_TRUE(fs.isOpened()); |
|
|
|
cv::gpu::GpuMat hogluv(121 * 10, 161, CV_32SC1); |
|
for (int i = 0; i < 10; ++i) |
|
{ |
|
cv::Mat channel; |
|
fs[std::string("channel") + itoa(i)] >> channel; |
|
cv::gpu::GpuMat gchannel(hogluv, cv::Rect(0, 121 * i, 161, 121)); |
|
gchannel.upload(channel); |
|
} |
|
|
|
cv::gpu::SoftCascade cascade; |
|
ASSERT_TRUE(cascade.load(perf::TestBase::getDataPath(GET_PARAM(0)))); |
|
|
|
cv::gpu::GpuMat objectBoxes(1, 10000 * sizeof(cv::gpu::SoftCascade::Detection), CV_8UC1), rois(cascade.getRoiSize(), CV_8UC1), trois; |
|
rois.setTo(1); |
|
cv::gpu::transpose(rois, trois); |
|
|
|
cv::gpu::GpuMat curr = objectBoxes; |
|
cascade.detectMultiScale(hogluv, trois, curr); |
|
|
|
TEST_CYCLE() |
|
{ |
|
curr = objectBoxes; |
|
cascade.detectMultiScale(hogluv, trois, curr); |
|
} |
|
|
|
SANITY_CHECK(sortDetections(curr)); |
|
} |
|
|
|
NO_CPU(SoftCascadeTest, detectOnIntegral) |