mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
365 lines
14 KiB
365 lines
14 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#ifndef OPENCV_STITCHING_STITCHER_HPP |
|
#define OPENCV_STITCHING_STITCHER_HPP |
|
|
|
#include "opencv2/core.hpp" |
|
#include "opencv2/features2d.hpp" |
|
#include "opencv2/stitching/warpers.hpp" |
|
#include "opencv2/stitching/detail/matchers.hpp" |
|
#include "opencv2/stitching/detail/motion_estimators.hpp" |
|
#include "opencv2/stitching/detail/exposure_compensate.hpp" |
|
#include "opencv2/stitching/detail/seam_finders.hpp" |
|
#include "opencv2/stitching/detail/blenders.hpp" |
|
#include "opencv2/stitching/detail/camera.hpp" |
|
|
|
|
|
#if defined(Status) |
|
# warning Detected X11 'Status' macro definition, it can cause build conflicts. Please, include this header before any X11 headers. |
|
#endif |
|
|
|
|
|
/** |
|
@defgroup stitching Images stitching |
|
|
|
This figure illustrates the stitching module pipeline implemented in the Stitcher class. Using that |
|
class it's possible to configure/remove some steps, i.e. adjust the stitching pipeline according to |
|
the particular needs. All building blocks from the pipeline are available in the detail namespace, |
|
one can combine and use them separately. |
|
|
|
The implemented stitching pipeline is very similar to the one proposed in @cite BL07 . |
|
|
|
![stitching pipeline](StitchingPipeline.jpg) |
|
|
|
Camera models |
|
------------- |
|
|
|
There are currently 2 camera models implemented in stitching pipeline. |
|
|
|
- _Homography model_ expecting perspective transformations between images |
|
implemented in @ref cv::detail::BestOf2NearestMatcher cv::detail::HomographyBasedEstimator |
|
cv::detail::BundleAdjusterReproj cv::detail::BundleAdjusterRay |
|
- _Affine model_ expecting affine transformation with 6 DOF or 4 DOF implemented in |
|
@ref cv::detail::AffineBestOf2NearestMatcher cv::detail::AffineBasedEstimator |
|
cv::detail::BundleAdjusterAffine cv::detail::BundleAdjusterAffinePartial cv::AffineWarper |
|
|
|
Homography model is useful for creating photo panoramas captured by camera, |
|
while affine-based model can be used to stitch scans and object captured by |
|
specialized devices. Use @ref cv::Stitcher::create to get preconfigured pipeline for one |
|
of those models. |
|
|
|
@note |
|
Certain detailed settings of @ref cv::Stitcher might not make sense. Especially |
|
you should not mix classes implementing affine model and classes implementing |
|
Homography model, as they work with different transformations. |
|
|
|
@{ |
|
@defgroup stitching_match Features Finding and Images Matching |
|
@defgroup stitching_rotation Rotation Estimation |
|
@defgroup stitching_autocalib Autocalibration |
|
@defgroup stitching_warp Images Warping |
|
@defgroup stitching_seam Seam Estimation |
|
@defgroup stitching_exposure Exposure Compensation |
|
@defgroup stitching_blend Image Blenders |
|
@} |
|
*/ |
|
|
|
namespace cv { |
|
|
|
//! @addtogroup stitching |
|
//! @{ |
|
|
|
/** @example samples/cpp/stitching.cpp |
|
A basic example on image stitching |
|
*/ |
|
|
|
/** @example samples/python/stitching.py |
|
A basic example on image stitching in Python. |
|
*/ |
|
|
|
/** @example samples/cpp/stitching_detailed.cpp |
|
A detailed example on image stitching |
|
*/ |
|
|
|
/** @brief High level image stitcher. |
|
|
|
It's possible to use this class without being aware of the entire stitching pipeline. However, to |
|
be able to achieve higher stitching stability and quality of the final images at least being |
|
familiar with the theory is recommended. |
|
|
|
@note |
|
- A basic example on image stitching can be found at |
|
opencv_source_code/samples/cpp/stitching.cpp |
|
- A basic example on image stitching in Python can be found at |
|
opencv_source_code/samples/python/stitching.py |
|
- A detailed example on image stitching can be found at |
|
opencv_source_code/samples/cpp/stitching_detailed.cpp |
|
*/ |
|
class CV_EXPORTS_W Stitcher |
|
{ |
|
public: |
|
/** |
|
* When setting a resolution for stitching, this values is a placeholder |
|
* for preserving the original resolution. |
|
*/ |
|
#if __cplusplus >= 201103L || (defined(_MSC_VER) && _MSC_VER >= 1900/*MSVS 2015*/) |
|
static constexpr double ORIG_RESOL = -1.0; |
|
#else |
|
// support MSVS 2013 |
|
static const double ORIG_RESOL; // Initialized in stitcher.cpp |
|
#endif |
|
|
|
enum Status |
|
{ |
|
OK = 0, |
|
ERR_NEED_MORE_IMGS = 1, |
|
ERR_HOMOGRAPHY_EST_FAIL = 2, |
|
ERR_CAMERA_PARAMS_ADJUST_FAIL = 3 |
|
}; |
|
|
|
enum Mode |
|
{ |
|
/** Mode for creating photo panoramas. Expects images under perspective |
|
transformation and projects resulting pano to sphere. |
|
|
|
@sa detail::BestOf2NearestMatcher SphericalWarper |
|
*/ |
|
PANORAMA = 0, |
|
/** Mode for composing scans. Expects images under affine transformation does |
|
not compensate exposure by default. |
|
|
|
@sa detail::AffineBestOf2NearestMatcher AffineWarper |
|
*/ |
|
SCANS = 1, |
|
|
|
}; |
|
|
|
/** @brief Creates a Stitcher configured in one of the stitching modes. |
|
|
|
@param mode Scenario for stitcher operation. This is usually determined by source of images |
|
to stitch and their transformation. Default parameters will be chosen for operation in given |
|
scenario. |
|
@return Stitcher class instance. |
|
*/ |
|
CV_WRAP static Ptr<Stitcher> create(Mode mode = Stitcher::PANORAMA); |
|
|
|
CV_WRAP double registrationResol() const { return registr_resol_; } |
|
CV_WRAP void setRegistrationResol(double resol_mpx) { registr_resol_ = resol_mpx; } |
|
|
|
CV_WRAP double seamEstimationResol() const { return seam_est_resol_; } |
|
CV_WRAP void setSeamEstimationResol(double resol_mpx) { seam_est_resol_ = resol_mpx; } |
|
|
|
CV_WRAP double compositingResol() const { return compose_resol_; } |
|
CV_WRAP void setCompositingResol(double resol_mpx) { compose_resol_ = resol_mpx; } |
|
|
|
CV_WRAP double panoConfidenceThresh() const { return conf_thresh_; } |
|
CV_WRAP void setPanoConfidenceThresh(double conf_thresh) { conf_thresh_ = conf_thresh; } |
|
|
|
CV_WRAP bool waveCorrection() const { return do_wave_correct_; } |
|
CV_WRAP void setWaveCorrection(bool flag) { do_wave_correct_ = flag; } |
|
|
|
CV_WRAP InterpolationFlags interpolationFlags() const { return interp_flags_; } |
|
CV_WRAP void setInterpolationFlags(InterpolationFlags interp_flags) { interp_flags_ = interp_flags; } |
|
|
|
detail::WaveCorrectKind waveCorrectKind() const { return wave_correct_kind_; } |
|
void setWaveCorrectKind(detail::WaveCorrectKind kind) { wave_correct_kind_ = kind; } |
|
|
|
Ptr<Feature2D> featuresFinder() { return features_finder_; } |
|
Ptr<Feature2D> featuresFinder() const { return features_finder_; } |
|
void setFeaturesFinder(Ptr<Feature2D> features_finder) |
|
{ features_finder_ = features_finder; } |
|
|
|
Ptr<detail::FeaturesMatcher> featuresMatcher() { return features_matcher_; } |
|
Ptr<detail::FeaturesMatcher> featuresMatcher() const { return features_matcher_; } |
|
void setFeaturesMatcher(Ptr<detail::FeaturesMatcher> features_matcher) |
|
{ features_matcher_ = features_matcher; } |
|
|
|
const cv::UMat& matchingMask() const { return matching_mask_; } |
|
void setMatchingMask(const cv::UMat &mask) |
|
{ |
|
CV_Assert(mask.type() == CV_8U && mask.cols == mask.rows); |
|
matching_mask_ = mask.clone(); |
|
} |
|
|
|
Ptr<detail::BundleAdjusterBase> bundleAdjuster() { return bundle_adjuster_; } |
|
const Ptr<detail::BundleAdjusterBase> bundleAdjuster() const { return bundle_adjuster_; } |
|
void setBundleAdjuster(Ptr<detail::BundleAdjusterBase> bundle_adjuster) |
|
{ bundle_adjuster_ = bundle_adjuster; } |
|
|
|
Ptr<detail::Estimator> estimator() { return estimator_; } |
|
const Ptr<detail::Estimator> estimator() const { return estimator_; } |
|
void setEstimator(Ptr<detail::Estimator> estimator) |
|
{ estimator_ = estimator; } |
|
|
|
Ptr<WarperCreator> warper() { return warper_; } |
|
const Ptr<WarperCreator> warper() const { return warper_; } |
|
void setWarper(Ptr<WarperCreator> creator) { warper_ = creator; } |
|
|
|
Ptr<detail::ExposureCompensator> exposureCompensator() { return exposure_comp_; } |
|
const Ptr<detail::ExposureCompensator> exposureCompensator() const { return exposure_comp_; } |
|
void setExposureCompensator(Ptr<detail::ExposureCompensator> exposure_comp) |
|
{ exposure_comp_ = exposure_comp; } |
|
|
|
Ptr<detail::SeamFinder> seamFinder() { return seam_finder_; } |
|
const Ptr<detail::SeamFinder> seamFinder() const { return seam_finder_; } |
|
void setSeamFinder(Ptr<detail::SeamFinder> seam_finder) { seam_finder_ = seam_finder; } |
|
|
|
Ptr<detail::Blender> blender() { return blender_; } |
|
const Ptr<detail::Blender> blender() const { return blender_; } |
|
void setBlender(Ptr<detail::Blender> b) { blender_ = b; } |
|
|
|
/** @brief These functions try to match the given images and to estimate rotations of each camera. |
|
|
|
@note Use the functions only if you're aware of the stitching pipeline, otherwise use |
|
Stitcher::stitch. |
|
|
|
@param images Input images. |
|
@param masks Masks for each input image specifying where to look for keypoints (optional). |
|
@return Status code. |
|
*/ |
|
CV_WRAP Status estimateTransform(InputArrayOfArrays images, InputArrayOfArrays masks = noArray()); |
|
|
|
/** @brief These function restors camera rotation and camera intrinsics of each camera |
|
* that can be got with @ref Stitcher::cameras call |
|
|
|
@param images Input images. |
|
@param cameras Estimated rotation of cameras for each of the input images. |
|
@param component Indices (0-based) of images constituting the final panorama (optional). |
|
@return Status code. |
|
*/ |
|
Status setTransform(InputArrayOfArrays images, |
|
const std::vector<detail::CameraParams> &cameras, |
|
const std::vector<int> &component); |
|
/** @overload */ |
|
Status setTransform(InputArrayOfArrays images, const std::vector<detail::CameraParams> &cameras); |
|
|
|
/** @overload */ |
|
CV_WRAP Status composePanorama(OutputArray pano); |
|
/** @brief These functions try to compose the given images (or images stored internally from the other function |
|
calls) into the final pano under the assumption that the image transformations were estimated |
|
before. |
|
|
|
@note Use the functions only if you're aware of the stitching pipeline, otherwise use |
|
Stitcher::stitch. |
|
|
|
@param images Input images. |
|
@param pano Final pano. |
|
@return Status code. |
|
*/ |
|
CV_WRAP Status composePanorama(InputArrayOfArrays images, OutputArray pano); |
|
|
|
/** @overload */ |
|
CV_WRAP Status stitch(InputArrayOfArrays images, OutputArray pano); |
|
/** @brief These functions try to stitch the given images. |
|
|
|
@param images Input images. |
|
@param masks Masks for each input image specifying where to look for keypoints (optional). |
|
@param pano Final pano. |
|
@return Status code. |
|
*/ |
|
CV_WRAP Status stitch(InputArrayOfArrays images, InputArrayOfArrays masks, OutputArray pano); |
|
|
|
std::vector<int> component() const { return indices_; } |
|
std::vector<detail::CameraParams> cameras() const { return cameras_; } |
|
CV_WRAP double workScale() const { return work_scale_; } |
|
|
|
/** @brief Return the mask of the panorama. |
|
|
|
The mask is a 8U UMat with the values: 0xFF (white) for pixels filled by the input images, |
|
0 (black) for unused pixels. It can be used as the mask for inpaint. |
|
|
|
@return The mask. |
|
*/ |
|
UMat resultMask() const { return result_mask_; } |
|
|
|
private: |
|
Status matchImages(); |
|
Status estimateCameraParams(); |
|
|
|
double registr_resol_; |
|
double seam_est_resol_; |
|
double compose_resol_; |
|
double conf_thresh_; |
|
InterpolationFlags interp_flags_; |
|
Ptr<Feature2D> features_finder_; |
|
Ptr<detail::FeaturesMatcher> features_matcher_; |
|
cv::UMat matching_mask_; |
|
Ptr<detail::BundleAdjusterBase> bundle_adjuster_; |
|
Ptr<detail::Estimator> estimator_; |
|
bool do_wave_correct_; |
|
detail::WaveCorrectKind wave_correct_kind_; |
|
Ptr<WarperCreator> warper_; |
|
Ptr<detail::ExposureCompensator> exposure_comp_; |
|
Ptr<detail::SeamFinder> seam_finder_; |
|
Ptr<detail::Blender> blender_; |
|
|
|
std::vector<cv::UMat> imgs_; |
|
std::vector<cv::UMat> masks_; |
|
std::vector<cv::Size> full_img_sizes_; |
|
std::vector<detail::ImageFeatures> features_; |
|
std::vector<detail::MatchesInfo> pairwise_matches_; |
|
std::vector<cv::UMat> seam_est_imgs_; |
|
std::vector<int> indices_; |
|
std::vector<detail::CameraParams> cameras_; |
|
UMat result_mask_; |
|
double work_scale_; |
|
double seam_scale_; |
|
double seam_work_aspect_; |
|
double warped_image_scale_; |
|
}; |
|
|
|
/** |
|
* @deprecated use Stitcher::create |
|
*/ |
|
CV_DEPRECATED Ptr<Stitcher> createStitcher(bool try_use_gpu = false); |
|
|
|
/** |
|
* @deprecated use Stitcher::create |
|
*/ |
|
CV_DEPRECATED Ptr<Stitcher> createStitcherScans(bool try_use_gpu = false); |
|
|
|
//! @} stitching |
|
|
|
} // namespace cv |
|
|
|
#endif // OPENCV_STITCHING_STITCHER_HPP
|
|
|