mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
378 lines
13 KiB
378 lines
13 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// Intel License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of Intel Corporation may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "test_precomp.hpp" |
|
|
|
#ifdef HAVE_CUDA |
|
|
|
namespace { |
|
|
|
//#define DUMP |
|
|
|
struct HOG : testing::TestWithParam<cv::gpu::DeviceInfo>, cv::gpu::HOGDescriptor |
|
{ |
|
cv::gpu::DeviceInfo devInfo; |
|
|
|
#ifdef DUMP |
|
std::ofstream f; |
|
#else |
|
std::ifstream f; |
|
#endif |
|
|
|
int wins_per_img_x; |
|
int wins_per_img_y; |
|
int blocks_per_win_x; |
|
int blocks_per_win_y; |
|
int block_hist_size; |
|
|
|
virtual void SetUp() |
|
{ |
|
devInfo = GetParam(); |
|
|
|
cv::gpu::setDevice(devInfo.deviceID()); |
|
} |
|
|
|
#ifdef DUMP |
|
void dump(const cv::Mat& blockHists, const std::vector<cv::Point>& locations) |
|
{ |
|
f.write((char*)&blockHists.rows, sizeof(blockHists.rows)); |
|
f.write((char*)&blockHists.cols, sizeof(blockHists.cols)); |
|
|
|
for (int i = 0; i < blockHists.rows; ++i) |
|
{ |
|
for (int j = 0; j < blockHists.cols; ++j) |
|
{ |
|
float val = blockHists.at<float>(i, j); |
|
f.write((char*)&val, sizeof(val)); |
|
} |
|
} |
|
|
|
int nlocations = locations.size(); |
|
f.write((char*)&nlocations, sizeof(nlocations)); |
|
|
|
for (int i = 0; i < locations.size(); ++i) |
|
f.write((char*)&locations[i], sizeof(locations[i])); |
|
} |
|
#else |
|
void compare(const cv::Mat& blockHists, const std::vector<cv::Point>& locations) |
|
{ |
|
int rows, cols; |
|
f.read((char*)&rows, sizeof(rows)); |
|
f.read((char*)&cols, sizeof(cols)); |
|
ASSERT_EQ(rows, blockHists.rows); |
|
ASSERT_EQ(cols, blockHists.cols); |
|
|
|
for (int i = 0; i < blockHists.rows; ++i) |
|
{ |
|
for (int j = 0; j < blockHists.cols; ++j) |
|
{ |
|
float val; |
|
f.read((char*)&val, sizeof(val)); |
|
ASSERT_NEAR(val, blockHists.at<float>(i, j), 1e-3); |
|
} |
|
} |
|
|
|
int nlocations; |
|
f.read((char*)&nlocations, sizeof(nlocations)); |
|
ASSERT_EQ(nlocations, static_cast<int>(locations.size())); |
|
|
|
for (int i = 0; i < nlocations; ++i) |
|
{ |
|
cv::Point location; |
|
f.read((char*)&location, sizeof(location)); |
|
ASSERT_EQ(location, locations[i]); |
|
} |
|
} |
|
#endif |
|
|
|
void testDetect(const cv::Mat& img) |
|
{ |
|
gamma_correction = false; |
|
setSVMDetector(cv::gpu::HOGDescriptor::getDefaultPeopleDetector()); |
|
|
|
std::vector<cv::Point> locations; |
|
|
|
// Test detect |
|
detect(loadMat(img), locations, 0); |
|
|
|
#ifdef DUMP |
|
dump(cv::Mat(block_hists), locations); |
|
#else |
|
compare(cv::Mat(block_hists), locations); |
|
#endif |
|
|
|
// Test detect on smaller image |
|
cv::Mat img2; |
|
cv::resize(img, img2, cv::Size(img.cols / 2, img.rows / 2)); |
|
detect(loadMat(img2), locations, 0); |
|
|
|
#ifdef DUMP |
|
dump(cv::Mat(block_hists), locations); |
|
#else |
|
compare(cv::Mat(block_hists), locations); |
|
#endif |
|
|
|
// Test detect on greater image |
|
cv::resize(img, img2, cv::Size(img.cols * 2, img.rows * 2)); |
|
detect(loadMat(img2), locations, 0); |
|
|
|
#ifdef DUMP |
|
dump(cv::Mat(block_hists), locations); |
|
#else |
|
compare(cv::Mat(block_hists), locations); |
|
#endif |
|
} |
|
|
|
// Does not compare border value, as interpolation leads to delta |
|
void compare_inner_parts(cv::Mat d1, cv::Mat d2) |
|
{ |
|
for (int i = 1; i < blocks_per_win_y - 1; ++i) |
|
for (int j = 1; j < blocks_per_win_x - 1; ++j) |
|
for (int k = 0; k < block_hist_size; ++k) |
|
{ |
|
float a = d1.at<float>(0, (i * blocks_per_win_x + j) * block_hist_size); |
|
float b = d2.at<float>(0, (i * blocks_per_win_x + j) * block_hist_size); |
|
ASSERT_FLOAT_EQ(a, b); |
|
} |
|
} |
|
}; |
|
|
|
TEST_P(HOG, Detect) |
|
{ |
|
cv::Mat img_rgb = readImage("hog/road.png"); |
|
ASSERT_FALSE(img_rgb.empty()); |
|
|
|
#ifdef DUMP |
|
f.open((std::string(cvtest::TS::ptr()->get_data_path()) + "hog/expected_output.bin").c_str(), std::ios_base::binary); |
|
ASSERT_TRUE(f.is_open()); |
|
#else |
|
f.open((std::string(cvtest::TS::ptr()->get_data_path()) + "hog/expected_output.bin").c_str(), std::ios_base::binary); |
|
ASSERT_TRUE(f.is_open()); |
|
#endif |
|
|
|
// Test on color image |
|
cv::Mat img; |
|
cv::cvtColor(img_rgb, img, CV_BGR2BGRA); |
|
testDetect(img); |
|
|
|
// Test on gray image |
|
cv::cvtColor(img_rgb, img, CV_BGR2GRAY); |
|
testDetect(img); |
|
|
|
f.close(); |
|
} |
|
|
|
TEST_P(HOG, GetDescriptors) |
|
{ |
|
// Load image (e.g. train data, composed from windows) |
|
cv::Mat img_rgb = readImage("hog/train_data.png"); |
|
ASSERT_FALSE(img_rgb.empty()); |
|
|
|
// Convert to C4 |
|
cv::Mat img; |
|
cv::cvtColor(img_rgb, img, CV_BGR2BGRA); |
|
|
|
cv::gpu::GpuMat d_img(img); |
|
|
|
// Convert train images into feature vectors (train table) |
|
cv::gpu::GpuMat descriptors, descriptors_by_cols; |
|
getDescriptors(d_img, win_size, descriptors, DESCR_FORMAT_ROW_BY_ROW); |
|
getDescriptors(d_img, win_size, descriptors_by_cols, DESCR_FORMAT_COL_BY_COL); |
|
|
|
// Check size of the result train table |
|
wins_per_img_x = 3; |
|
wins_per_img_y = 2; |
|
blocks_per_win_x = 7; |
|
blocks_per_win_y = 15; |
|
block_hist_size = 36; |
|
cv::Size descr_size_expected = cv::Size(blocks_per_win_x * blocks_per_win_y * block_hist_size, |
|
wins_per_img_x * wins_per_img_y); |
|
ASSERT_EQ(descr_size_expected, descriptors.size()); |
|
|
|
// Check both formats of output descriptors are handled correctly |
|
cv::Mat dr(descriptors); |
|
cv::Mat dc(descriptors_by_cols); |
|
for (int i = 0; i < wins_per_img_x * wins_per_img_y; ++i) |
|
{ |
|
const float* l = dr.rowRange(i, i + 1).ptr<float>(); |
|
const float* r = dc.rowRange(i, i + 1).ptr<float>(); |
|
for (int y = 0; y < blocks_per_win_y; ++y) |
|
for (int x = 0; x < blocks_per_win_x; ++x) |
|
for (int k = 0; k < block_hist_size; ++k) |
|
ASSERT_EQ(l[(y * blocks_per_win_x + x) * block_hist_size + k], |
|
r[(x * blocks_per_win_y + y) * block_hist_size + k]); |
|
} |
|
|
|
/* Now we want to extract the same feature vectors, but from single images. NOTE: results will |
|
be defferent, due to border values interpolation. Using of many small images is slower, however we |
|
wont't call getDescriptors and will use computeBlockHistograms instead of. computeBlockHistograms |
|
works good, it can be checked in the gpu_hog sample */ |
|
|
|
img_rgb = readImage("hog/positive1.png"); |
|
ASSERT_TRUE(!img_rgb.empty()); |
|
cv::cvtColor(img_rgb, img, CV_BGR2BGRA); |
|
computeBlockHistograms(cv::gpu::GpuMat(img)); |
|
// Everything is fine with interpolation for left top subimage |
|
ASSERT_EQ(0.0, cv::norm((cv::Mat)block_hists, (cv::Mat)descriptors.rowRange(0, 1))); |
|
|
|
img_rgb = readImage("hog/positive2.png"); |
|
ASSERT_TRUE(!img_rgb.empty()); |
|
cv::cvtColor(img_rgb, img, CV_BGR2BGRA); |
|
computeBlockHistograms(cv::gpu::GpuMat(img)); |
|
compare_inner_parts(cv::Mat(block_hists), cv::Mat(descriptors.rowRange(1, 2))); |
|
|
|
img_rgb = readImage("hog/negative1.png"); |
|
ASSERT_TRUE(!img_rgb.empty()); |
|
cv::cvtColor(img_rgb, img, CV_BGR2BGRA); |
|
computeBlockHistograms(cv::gpu::GpuMat(img)); |
|
compare_inner_parts(cv::Mat(block_hists), cv::Mat(descriptors.rowRange(2, 3))); |
|
|
|
img_rgb = readImage("hog/negative2.png"); |
|
ASSERT_TRUE(!img_rgb.empty()); |
|
cv::cvtColor(img_rgb, img, CV_BGR2BGRA); |
|
computeBlockHistograms(cv::gpu::GpuMat(img)); |
|
compare_inner_parts(cv::Mat(block_hists), cv::Mat(descriptors.rowRange(3, 4))); |
|
|
|
img_rgb = readImage("hog/positive3.png"); |
|
ASSERT_TRUE(!img_rgb.empty()); |
|
cv::cvtColor(img_rgb, img, CV_BGR2BGRA); |
|
computeBlockHistograms(cv::gpu::GpuMat(img)); |
|
compare_inner_parts(cv::Mat(block_hists), cv::Mat(descriptors.rowRange(4, 5))); |
|
|
|
img_rgb = readImage("hog/negative3.png"); |
|
ASSERT_TRUE(!img_rgb.empty()); |
|
cv::cvtColor(img_rgb, img, CV_BGR2BGRA); |
|
computeBlockHistograms(cv::gpu::GpuMat(img)); |
|
compare_inner_parts(cv::Mat(block_hists), cv::Mat(descriptors.rowRange(5, 6))); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(GPU_ObjDetect, HOG, ALL_DEVICES); |
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////// |
|
/// LBP classifier |
|
|
|
PARAM_TEST_CASE(LBP_Read_classifier, cv::gpu::DeviceInfo, int) |
|
{ |
|
cv::gpu::DeviceInfo devInfo; |
|
|
|
virtual void SetUp() |
|
{ |
|
devInfo = GET_PARAM(0); |
|
cv::gpu::setDevice(devInfo.deviceID()); |
|
} |
|
}; |
|
|
|
TEST_P(LBP_Read_classifier, Accuracy) |
|
{ |
|
cv::gpu::CascadeClassifier_GPU classifier; |
|
std::string classifierXmlPath = std::string(cvtest::TS::ptr()->get_data_path()) + "lbpcascade/lbpcascade_frontalface.xml"; |
|
ASSERT_TRUE(classifier.load(classifierXmlPath)); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(GPU_ObjDetect, LBP_Read_classifier, |
|
testing::Combine(ALL_DEVICES, testing::Values<int>(0))); |
|
|
|
|
|
PARAM_TEST_CASE(LBP_classify, cv::gpu::DeviceInfo, int) |
|
{ |
|
cv::gpu::DeviceInfo devInfo; |
|
|
|
virtual void SetUp() |
|
{ |
|
devInfo = GET_PARAM(0); |
|
cv::gpu::setDevice(devInfo.deviceID()); |
|
} |
|
}; |
|
|
|
TEST_P(LBP_classify, Accuracy) |
|
{ |
|
std::string classifierXmlPath = std::string(cvtest::TS::ptr()->get_data_path()) + "lbpcascade/lbpcascade_frontalface.xml"; |
|
std::string imagePath = std::string(cvtest::TS::ptr()->get_data_path()) + "lbpcascade/er.png"; |
|
|
|
cv::CascadeClassifier cpuClassifier(classifierXmlPath); |
|
ASSERT_FALSE(cpuClassifier.empty()); |
|
|
|
cv::Mat image = cv::imread(imagePath); |
|
image = image.colRange(0, image.cols/2); |
|
cv::Mat grey; |
|
cvtColor(image, grey, CV_BGR2GRAY); |
|
ASSERT_FALSE(image.empty()); |
|
|
|
std::vector<cv::Rect> rects; |
|
cpuClassifier.detectMultiScale(grey, rects); |
|
cv::Mat markedImage = image.clone(); |
|
|
|
std::vector<cv::Rect>::iterator it = rects.begin(); |
|
for (; it != rects.end(); ++it) |
|
cv::rectangle(markedImage, *it, CV_RGB(0, 0, 255)); |
|
|
|
cv::gpu::CascadeClassifier_GPU gpuClassifier; |
|
ASSERT_TRUE(gpuClassifier.load(classifierXmlPath)); |
|
|
|
cv::gpu::GpuMat gpu_rects; |
|
cv::gpu::GpuMat tested(grey); |
|
int count = gpuClassifier.detectMultiScale(tested, gpu_rects); |
|
|
|
#if defined (LOG_CASCADE_STATISTIC) |
|
cv::Mat downloaded(gpu_rects); |
|
const cv::Rect* faces = downloaded.ptr<cv::Rect>(); |
|
for (int i = 0; i < count; i++) |
|
{ |
|
cv::Rect r = faces[i]; |
|
|
|
std::cout << r.x << " " << r.y << " " << r.width << " " << r.height << std::endl; |
|
cv::rectangle(markedImage, r , CV_RGB(255, 0, 0)); |
|
} |
|
#endif |
|
|
|
#if defined (LOG_CASCADE_STATISTIC) |
|
cv::imshow("Res", markedImage); cv::waitKey(); |
|
#endif |
|
(void)count; |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(GPU_ObjDetect, LBP_classify, |
|
testing::Combine(ALL_DEVICES, testing::Values<int>(0))); |
|
|
|
} // namespace |
|
|
|
#endif // HAVE_CUDA
|
|
|