Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1674 lines
50 KiB
1674 lines
50 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
|
|
#ifdef HAVE_VECLIB |
|
#include <vecLib/clapack.h> |
|
|
|
typedef __CLPK_integer integer; |
|
typedef __CLPK_real real; |
|
#else |
|
#include "clapack.h" |
|
#endif |
|
|
|
#undef abs |
|
#undef max |
|
#undef min |
|
|
|
namespace cv |
|
{ |
|
|
|
/****************************************************************************************\ |
|
* LU & Cholesky implementation for small matrices * |
|
\****************************************************************************************/ |
|
|
|
template<typename _Tp> static inline int LUImpl(_Tp* A, int m, _Tp* b, int n) |
|
{ |
|
int i, j, k, p = 1; |
|
|
|
for( i = 0; i < m; i++ ) |
|
{ |
|
k = i; |
|
|
|
for( j = i+1; j < m; j++ ) |
|
if( std::abs(A[j*m + i]) > std::abs(A[k*m + i]) ) |
|
k = j; |
|
|
|
if( std::abs(A[k*m + i]) < std::numeric_limits<_Tp>::epsilon() ) |
|
return 0; |
|
|
|
if( k != i ) |
|
{ |
|
for( j = i; j < m; j++ ) |
|
std::swap(A[i*m + j], A[k*m + j]); |
|
if( b ) |
|
for( j = 0; j < n; j++ ) |
|
std::swap(b[i*n + j], b[k*n + j]); |
|
p = -p; |
|
} |
|
|
|
_Tp d = -1/A[i*m + i]; |
|
|
|
for( j = i+1; j < m; j++ ) |
|
{ |
|
_Tp alpha = A[j*m + i]*d; |
|
|
|
for( k = i+1; k < m; k++ ) |
|
A[j*m + k] += alpha*A[i*m + k]; |
|
|
|
if( b ) |
|
for( k = 0; k < n; k++ ) |
|
b[j*n + k] += alpha*b[i*n + k]; |
|
} |
|
|
|
A[i*m + i] = -d; |
|
} |
|
|
|
if( b ) |
|
{ |
|
for( i = m-1; i >= 0; i-- ) |
|
for( j = 0; j < n; j++ ) |
|
{ |
|
_Tp s = b[i*n + j]; |
|
for( k = i+1; k < m; k++ ) |
|
s -= A[i*m + k]*b[k*n + j]; |
|
b[i*n + j] = s*A[i*m + i]; |
|
} |
|
} |
|
|
|
return p; |
|
} |
|
|
|
|
|
int LU(float* A, int m, float* b, int n) |
|
{ |
|
return LUImpl(A, m, b, n); |
|
} |
|
|
|
|
|
int LU(double* A, int m, double* b, int n) |
|
{ |
|
return LUImpl(A, m, b, n); |
|
} |
|
|
|
|
|
template<typename _Tp> static inline bool CholImpl(_Tp* A, int m, _Tp* b, int n) |
|
{ |
|
_Tp* L = A; |
|
int i, j, k; |
|
double s; |
|
|
|
for( i = 0; i < m; i++ ) |
|
{ |
|
for( j = 0; j < i; j++ ) |
|
{ |
|
s = A[i*m + j]; |
|
for( k = 0; k < j; k++ ) |
|
s -= L[i*m + k]*L[j*m + k]; |
|
L[i*m + j] = (_Tp)(s*L[j*m + j]); |
|
} |
|
s = A[i*m + i]; |
|
for( k = 0; k < j; k++ ) |
|
{ |
|
double t = L[i*m + k]; |
|
s -= t*t; |
|
} |
|
if( s < std::numeric_limits<_Tp>::epsilon() ) |
|
return 0; |
|
L[i*m + i] = (_Tp)(1./std::sqrt(s)); |
|
} |
|
|
|
if( !b ) |
|
return false; |
|
|
|
// LLt x = b |
|
// 1: L y = b |
|
// 2. Lt x = y |
|
|
|
/* |
|
[ L00 ] y0 b0 |
|
[ L10 L11 ] y1 = b1 |
|
[ L20 L21 L22 ] y2 b2 |
|
[ L30 L31 L32 L33 ] y3 b3 |
|
|
|
[ L00 L10 L20 L30 ] x0 y0 |
|
[ L11 L21 L31 ] x1 = y1 |
|
[ L22 L32 ] x2 y2 |
|
[ L33 ] x3 y3 |
|
*/ |
|
|
|
for( i = 0; i < m; i++ ) |
|
{ |
|
for( j = 0; j < n; j++ ) |
|
{ |
|
s = b[i*n + j]; |
|
for( k = 0; k < i; k++ ) |
|
s -= L[i*m + k]*b[k*n + j]; |
|
b[i*n + j] = (_Tp)(s*L[i*m + i]); |
|
} |
|
} |
|
|
|
for( i = m-1; i >= 0; i-- ) |
|
{ |
|
for( j = 0; j < n; j++ ) |
|
{ |
|
s = b[i*n + j]; |
|
for( k = m-1; k > i; k-- ) |
|
s -= L[k*m + i]*b[k*n + j]; |
|
b[i*n + j] = (_Tp)(s*L[i*m + i]); |
|
} |
|
} |
|
|
|
return true; |
|
} |
|
|
|
|
|
bool Cholesky(float* A, int m, float* b, int n) |
|
{ |
|
return CholImpl(A, m, b, n); |
|
} |
|
|
|
bool Cholesky(double* A, int m, double* b, int n) |
|
{ |
|
return CholImpl(A, m, b, n); |
|
} |
|
|
|
/****************************************************************************************\ |
|
* Determinant of the matrix * |
|
\****************************************************************************************/ |
|
|
|
#define det2(m) ((double)m(0,0)*m(1,1) - (double)m(0,1)*m(1,0)) |
|
#define det3(m) (m(0,0)*((double)m(1,1)*m(2,2) - (double)m(1,2)*m(2,1)) - \ |
|
m(0,1)*((double)m(1,0)*m(2,2) - (double)m(1,2)*m(2,0)) + \ |
|
m(0,2)*((double)m(1,0)*m(2,1) - (double)m(1,1)*m(2,0))) |
|
|
|
double determinant( const Mat& mat ) |
|
{ |
|
double result = 0; |
|
int type = mat.type(), rows = mat.rows; |
|
size_t step = mat.step; |
|
const uchar* m = mat.data; |
|
|
|
CV_Assert( mat.rows == mat.cols && (type == CV_32F || type == CV_64F)); |
|
|
|
#define Mf(y, x) ((float*)(m + y*step))[x] |
|
#define Md(y, x) ((double*)(m + y*step))[x] |
|
|
|
if( rows <= 10 ) |
|
{ |
|
if( type == CV_32F ) |
|
{ |
|
if( rows == 2 ) |
|
result = det2(Mf); |
|
else if( rows == 3 ) |
|
result = det3(Mf); |
|
else if( rows == 1 ) |
|
result = Mf(0,0); |
|
else |
|
{ |
|
size_t bufSize = rows*rows*sizeof(float); |
|
AutoBuffer<uchar> buffer(bufSize); |
|
Mat a(rows, rows, CV_32F, (uchar*)buffer); |
|
mat.copyTo(a); |
|
|
|
result = LU((float*)a.data, rows, 0, 0); |
|
if( result ) |
|
{ |
|
for( int i = 0; i < rows; i++ ) |
|
result *= ((const float*)(a.data + a.step*i))[i]; |
|
result = 1./result; |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
if( rows == 2 ) |
|
result = det2(Md); |
|
else if( rows == 3 ) |
|
result = det3(Md); |
|
else if( rows == 1 ) |
|
result = Md(0,0); |
|
else |
|
{ |
|
size_t bufSize = rows*rows*sizeof(double); |
|
AutoBuffer<uchar> buffer(bufSize); |
|
Mat a(rows, rows, CV_64F, (uchar*)buffer); |
|
mat.copyTo(a); |
|
|
|
result = LU((double*)a.data, rows, 0, 0); |
|
if( result ) |
|
{ |
|
for( int i = 0; i < rows; i++ ) |
|
result *= ((const double*)(a.data + a.step*i))[i]; |
|
result = 1./result; |
|
} |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
integer i, n = rows, *ipiv, info=0, sign = 0; |
|
size_t bufSize = n*n*sizeof(double) + (n+1)*sizeof(ipiv[0]); |
|
AutoBuffer<uchar> buffer(bufSize); |
|
|
|
Mat a(n, n, CV_64F, (uchar*)buffer); |
|
mat.convertTo(a, CV_64F); |
|
|
|
ipiv = (integer*)cvAlignPtr(a.data + a.step*a.rows, sizeof(integer)); |
|
dgetrf_(&n, &n, (double*)a.data, &n, ipiv, &info); |
|
assert(info >= 0); |
|
|
|
if( info == 0 ) |
|
{ |
|
result = 1; |
|
for( i = 0; i < n; i++ ) |
|
{ |
|
result *= ((double*)a.data)[i*(n+1)]; |
|
sign ^= ipiv[i] != i+1; |
|
} |
|
result *= sign ? -1 : 1; |
|
} |
|
} |
|
|
|
#undef Mf |
|
#undef Md |
|
|
|
return result; |
|
} |
|
|
|
/****************************************************************************************\ |
|
* Inverse (or pseudo-inverse) of a matrix * |
|
\****************************************************************************************/ |
|
|
|
#define Sf( y, x ) ((float*)(srcdata + y*srcstep))[x] |
|
#define Sd( y, x ) ((double*)(srcdata + y*srcstep))[x] |
|
#define Df( y, x ) ((float*)(dstdata + y*dststep))[x] |
|
#define Dd( y, x ) ((double*)(dstdata + y*dststep))[x] |
|
|
|
double invert( const Mat& src, Mat& dst, int method ) |
|
{ |
|
double result = 0; |
|
int type = src.type(); |
|
|
|
CV_Assert( method == DECOMP_LU || method == DECOMP_CHOLESKY || method == DECOMP_SVD ); |
|
|
|
if( method == DECOMP_SVD ) |
|
{ |
|
int n = std::min(src.rows, src.cols); |
|
SVD svd(src); |
|
svd.backSubst(Mat(), dst); |
|
|
|
return type == CV_32F ? |
|
(((float*)svd.w.data)[0] >= FLT_EPSILON ? |
|
((float*)svd.w.data)[n-1]/((float*)svd.w.data)[0] : 0) : |
|
(((double*)svd.w.data)[0] >= DBL_EPSILON ? |
|
((double*)svd.w.data)[n-1]/((double*)svd.w.data)[0] : 0); |
|
} |
|
|
|
CV_Assert( src.rows == src.cols && (type == CV_32F || type == CV_64F)); |
|
dst.create( src.rows, src.cols, type ); |
|
|
|
if( src.rows <= 3 ) |
|
{ |
|
uchar* srcdata = src.data; |
|
uchar* dstdata = dst.data; |
|
size_t srcstep = src.step; |
|
size_t dststep = dst.step; |
|
|
|
if( src.rows == 2 ) |
|
{ |
|
if( type == CV_32FC1 ) |
|
{ |
|
double d = det2(Sf); |
|
if( d != 0. ) |
|
{ |
|
double t0, t1; |
|
result = d; |
|
d = 1./d; |
|
t0 = Sf(0,0)*d; |
|
t1 = Sf(1,1)*d; |
|
Df(1,1) = (float)t0; |
|
Df(0,0) = (float)t1; |
|
t0 = -Sf(0,1)*d; |
|
t1 = -Sf(1,0)*d; |
|
Df(0,1) = (float)t0; |
|
Df(1,0) = (float)t1; |
|
} |
|
} |
|
else |
|
{ |
|
double d = det2(Sd); |
|
if( d != 0. ) |
|
{ |
|
double t0, t1; |
|
result = d; |
|
d = 1./d; |
|
t0 = Sd(0,0)*d; |
|
t1 = Sd(1,1)*d; |
|
Dd(1,1) = t0; |
|
Dd(0,0) = t1; |
|
t0 = -Sd(0,1)*d; |
|
t1 = -Sd(1,0)*d; |
|
Dd(0,1) = t0; |
|
Dd(1,0) = t1; |
|
} |
|
} |
|
} |
|
else if( src.rows == 3 ) |
|
{ |
|
if( type == CV_32FC1 ) |
|
{ |
|
double d = det3(Sf); |
|
if( d != 0. ) |
|
{ |
|
float t[9]; |
|
result = d; |
|
d = 1./d; |
|
|
|
t[0] = (float)(((double)Sf(1,1) * Sf(2,2) - (double)Sf(1,2) * Sf(2,1)) * d); |
|
t[1] = (float)(((double)Sf(0,2) * Sf(2,1) - (double)Sf(0,1) * Sf(2,2)) * d); |
|
t[2] = (float)(((double)Sf(0,1) * Sf(1,2) - (double)Sf(0,2) * Sf(1,1)) * d); |
|
|
|
t[3] = (float)(((double)Sf(1,2) * Sf(2,0) - (double)Sf(1,0) * Sf(2,2)) * d); |
|
t[4] = (float)(((double)Sf(0,0) * Sf(2,2) - (double)Sf(0,2) * Sf(2,0)) * d); |
|
t[5] = (float)(((double)Sf(0,2) * Sf(1,0) - (double)Sf(0,0) * Sf(1,2)) * d); |
|
|
|
t[6] = (float)(((double)Sf(1,0) * Sf(2,1) - (double)Sf(1,1) * Sf(2,0)) * d); |
|
t[7] = (float)(((double)Sf(0,1) * Sf(2,0) - (double)Sf(0,0) * Sf(2,1)) * d); |
|
t[8] = (float)(((double)Sf(0,0) * Sf(1,1) - (double)Sf(0,1) * Sf(1,0)) * d); |
|
|
|
Df(0,0) = t[0]; Df(0,1) = t[1]; Df(0,2) = t[2]; |
|
Df(1,0) = t[3]; Df(1,1) = t[4]; Df(1,2) = t[5]; |
|
Df(2,0) = t[6]; Df(2,1) = t[7]; Df(2,2) = t[8]; |
|
} |
|
} |
|
else |
|
{ |
|
double d = det3(Sd); |
|
if( d != 0. ) |
|
{ |
|
double t[9]; |
|
result = d; |
|
d = 1./d; |
|
|
|
t[0] = (Sd(1,1) * Sd(2,2) - Sd(1,2) * Sd(2,1)) * d; |
|
t[1] = (Sd(0,2) * Sd(2,1) - Sd(0,1) * Sd(2,2)) * d; |
|
t[2] = (Sd(0,1) * Sd(1,2) - Sd(0,2) * Sd(1,1)) * d; |
|
|
|
t[3] = (Sd(1,2) * Sd(2,0) - Sd(1,0) * Sd(2,2)) * d; |
|
t[4] = (Sd(0,0) * Sd(2,2) - Sd(0,2) * Sd(2,0)) * d; |
|
t[5] = (Sd(0,2) * Sd(1,0) - Sd(0,0) * Sd(1,2)) * d; |
|
|
|
t[6] = (Sd(1,0) * Sd(2,1) - Sd(1,1) * Sd(2,0)) * d; |
|
t[7] = (Sd(0,1) * Sd(2,0) - Sd(0,0) * Sd(2,1)) * d; |
|
t[8] = (Sd(0,0) * Sd(1,1) - Sd(0,1) * Sd(1,0)) * d; |
|
|
|
Dd(0,0) = t[0]; Dd(0,1) = t[1]; Dd(0,2) = t[2]; |
|
Dd(1,0) = t[3]; Dd(1,1) = t[4]; Dd(1,2) = t[5]; |
|
Dd(2,0) = t[6]; Dd(2,1) = t[7]; Dd(2,2) = t[8]; |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
assert( src.rows == 1 ); |
|
|
|
if( type == CV_32FC1 ) |
|
{ |
|
double d = Sf(0,0); |
|
if( d != 0. ) |
|
{ |
|
result = d; |
|
Df(0,0) = (float)(1./d); |
|
} |
|
} |
|
else |
|
{ |
|
double d = Sd(0,0); |
|
if( d != 0. ) |
|
{ |
|
result = d; |
|
Dd(0,0) = 1./d; |
|
} |
|
} |
|
} |
|
return result; |
|
} |
|
|
|
if( dst.cols <= 10 ) |
|
{ |
|
int n = dst.cols, elem_size = CV_ELEM_SIZE(type); |
|
AutoBuffer<uchar> buf(n*n*2*elem_size); |
|
Mat src1(n, n, type, (uchar*)buf); |
|
Mat dst1(n, n, type, dst.isContinuous() ? dst.data : src1.data + n*n*elem_size); |
|
src.copyTo(src1); |
|
setIdentity(dst1); |
|
|
|
if( method == DECOMP_LU && type == CV_32F ) |
|
result = LU((float*)src1.data, n, (float*)dst1.data, n); |
|
else if( method == DECOMP_LU && type == CV_64F ) |
|
result = LU((double*)src1.data, n, (double*)dst1.data, n); |
|
else if( method == DECOMP_CHOLESKY && type == CV_32F ) |
|
result = Cholesky((float*)src1.data, n, (float*)dst1.data, n); |
|
else |
|
result = Cholesky((double*)src1.data, n, (double*)dst1.data, n); |
|
dst1.copyTo(dst); |
|
result = std::abs(result); |
|
} |
|
else |
|
{ |
|
integer n = dst.cols, lwork=-1, lda = n, piv1=0, info=0; |
|
int t_size = type == CV_32F ? n*n*sizeof(double) : 0; |
|
int buf_size = t_size; |
|
AutoBuffer<uchar> buf; |
|
|
|
if( method == DECOMP_LU ) |
|
{ |
|
double work1 = 0; |
|
dgetri_(&n, (double*)dst.data, &lda, &piv1, &work1, &lwork, &info); |
|
lwork = cvRound(work1); |
|
|
|
buf_size += (int)(n*sizeof(integer) + (lwork + 1)*sizeof(double)); |
|
buf.allocate(buf_size); |
|
uchar* buffer = (uchar*)buf; |
|
|
|
Mat arr = dst; |
|
if( type == CV_32F ) |
|
{ |
|
arr = Mat(n, n, CV_64F, buffer); |
|
src.convertTo(arr, CV_64F); |
|
buffer += t_size; |
|
} |
|
else |
|
{ |
|
src.copyTo(arr); |
|
lda = (integer)(arr.step/sizeof(double)); |
|
} |
|
|
|
dgetrf_(&n, &n, (double*)arr.data, &lda, (integer*)buffer, &info); |
|
if(info==0) |
|
dgetri_(&n, (double*)arr.data, &lda, (integer*)buffer, |
|
(double*)cvAlignPtr(buffer + n*sizeof(integer), sizeof(double)), |
|
&lwork, &info); |
|
if(info==0 && arr.data != dst.data) |
|
arr.convertTo(dst, dst.type()); |
|
} |
|
else if( method == DECOMP_CHOLESKY ) |
|
{ |
|
Mat arr = dst; |
|
if( type == CV_32F ) |
|
{ |
|
buf.allocate(buf_size); |
|
arr = Mat(n, n, CV_64F, (uchar*)buf); |
|
src.convertTo(arr, CV_64F); |
|
} |
|
else |
|
{ |
|
src.copyTo(arr); |
|
lda = (integer)(arr.step/sizeof(double)); |
|
} |
|
|
|
char L[] = {'L', '\0'}; |
|
dpotrf_(L, &n, (double*)arr.data, &lda, &info); |
|
if(info==0) |
|
dpotri_(L, &n, (double*)arr.data, &lda, &info); |
|
if(info==0) |
|
{ |
|
completeSymm(arr); |
|
if( arr.data != dst.data ) |
|
arr.convertTo(dst, dst.type()); |
|
} |
|
} |
|
result = info == 0; |
|
} |
|
|
|
if( !result ) |
|
dst = Scalar(0); |
|
|
|
return result; |
|
} |
|
|
|
/****************************************************************************************\ |
|
* Solving a linear system * |
|
\****************************************************************************************/ |
|
|
|
bool solve( const Mat& src, const Mat& _src2, Mat& dst, int method ) |
|
{ |
|
bool result = true; |
|
int type = src.type(); |
|
bool is_normal = (method & DECOMP_NORMAL) != 0; |
|
|
|
CV_Assert( type == _src2.type() && (type == CV_32F || type == CV_64F) ); |
|
|
|
method &= ~DECOMP_NORMAL; |
|
CV_Assert( (method != DECOMP_LU && method != DECOMP_CHOLESKY) || |
|
is_normal || src.rows == src.cols ); |
|
|
|
// check case of a single equation and small matrix |
|
if( (method == DECOMP_LU || method == DECOMP_CHOLESKY) && |
|
src.rows <= 3 && src.rows == src.cols && _src2.cols == 1 ) |
|
{ |
|
dst.create( src.cols, _src2.cols, src.type() ); |
|
|
|
#define bf(y) ((float*)(bdata + y*src2step))[0] |
|
#define bd(y) ((double*)(bdata + y*src2step))[0] |
|
|
|
uchar* srcdata = src.data; |
|
uchar* bdata = _src2.data; |
|
uchar* dstdata = dst.data; |
|
size_t srcstep = src.step; |
|
size_t src2step = _src2.step; |
|
size_t dststep = dst.step; |
|
|
|
if( src.rows == 2 ) |
|
{ |
|
if( type == CV_32FC1 ) |
|
{ |
|
double d = det2(Sf); |
|
if( d != 0. ) |
|
{ |
|
double t; |
|
d = 1./d; |
|
t = (float)(((double)bf(0)*Sf(1,1) - (double)bf(1)*Sf(0,1))*d); |
|
Df(1,0) = (float)(((double)bf(1)*Sf(0,0) - (double)bf(0)*Sf(1,0))*d); |
|
Df(0,0) = t; |
|
} |
|
else |
|
result = false; |
|
} |
|
else |
|
{ |
|
double d = det2(Sd); |
|
if( d != 0. ) |
|
{ |
|
double t; |
|
d = 1./d; |
|
t = (bd(0)*Sd(1,1) - bd(1)*Sd(0,1))*d; |
|
Dd(1,0) = (bd(1)*Sd(0,0) - bd(0)*Sd(1,0))*d; |
|
Dd(0,0) = t; |
|
} |
|
else |
|
result = false; |
|
} |
|
} |
|
else if( src.rows == 3 ) |
|
{ |
|
if( type == CV_32FC1 ) |
|
{ |
|
double d = det3(Sf); |
|
if( d != 0. ) |
|
{ |
|
float t[3]; |
|
d = 1./d; |
|
|
|
t[0] = (float)(d* |
|
(bf(0)*((double)Sf(1,1)*Sf(2,2) - (double)Sf(1,2)*Sf(2,1)) - |
|
Sf(0,1)*((double)bf(1)*Sf(2,2) - (double)Sf(1,2)*bf(2)) + |
|
Sf(0,2)*((double)bf(1)*Sf(2,1) - (double)Sf(1,1)*bf(2)))); |
|
|
|
t[1] = (float)(d* |
|
(Sf(0,0)*(double)(bf(1)*Sf(2,2) - (double)Sf(1,2)*bf(2)) - |
|
bf(0)*((double)Sf(1,0)*Sf(2,2) - (double)Sf(1,2)*Sf(2,0)) + |
|
Sf(0,2)*((double)Sf(1,0)*bf(2) - (double)bf(1)*Sf(2,0)))); |
|
|
|
t[2] = (float)(d* |
|
(Sf(0,0)*((double)Sf(1,1)*bf(2) - (double)bf(1)*Sf(2,1)) - |
|
Sf(0,1)*((double)Sf(1,0)*bf(2) - (double)bf(1)*Sf(2,0)) + |
|
bf(0)*((double)Sf(1,0)*Sf(2,1) - (double)Sf(1,1)*Sf(2,0)))); |
|
|
|
Df(0,0) = t[0]; |
|
Df(1,0) = t[1]; |
|
Df(2,0) = t[2]; |
|
} |
|
else |
|
result = false; |
|
} |
|
else |
|
{ |
|
double d = det3(Sd); |
|
if( d != 0. ) |
|
{ |
|
double t[9]; |
|
|
|
d = 1./d; |
|
|
|
t[0] = ((Sd(1,1) * Sd(2,2) - Sd(1,2) * Sd(2,1))*bd(0) + |
|
(Sd(0,2) * Sd(2,1) - Sd(0,1) * Sd(2,2))*bd(1) + |
|
(Sd(0,1) * Sd(1,2) - Sd(0,2) * Sd(1,1))*bd(2))*d; |
|
|
|
t[1] = ((Sd(1,2) * Sd(2,0) - Sd(1,0) * Sd(2,2))*bd(0) + |
|
(Sd(0,0) * Sd(2,2) - Sd(0,2) * Sd(2,0))*bd(1) + |
|
(Sd(0,2) * Sd(1,0) - Sd(0,0) * Sd(1,2))*bd(2))*d; |
|
|
|
t[2] = ((Sd(1,0) * Sd(2,1) - Sd(1,1) * Sd(2,0))*bd(0) + |
|
(Sd(0,1) * Sd(2,0) - Sd(0,0) * Sd(2,1))*bd(1) + |
|
(Sd(0,0) * Sd(1,1) - Sd(0,1) * Sd(1,0))*bd(2))*d; |
|
|
|
Dd(0,0) = t[0]; |
|
Dd(1,0) = t[1]; |
|
Dd(2,0) = t[2]; |
|
} |
|
else |
|
result = false; |
|
} |
|
} |
|
else |
|
{ |
|
assert( src.rows == 1 ); |
|
|
|
if( type == CV_32FC1 ) |
|
{ |
|
double d = Sf(0,0); |
|
if( d != 0. ) |
|
Df(0,0) = (float)(bf(0)/d); |
|
else |
|
result = false; |
|
} |
|
else |
|
{ |
|
double d = Sd(0,0); |
|
if( d != 0. ) |
|
Dd(0,0) = (bd(0)/d); |
|
else |
|
result = false; |
|
} |
|
} |
|
return result; |
|
} |
|
|
|
double rcond=-1, s1=0, work1=0, *work=0, *s=0; |
|
float frcond=-1, fs1=0, fwork1=0, *fwork=0, *fs=0; |
|
integer m = src.rows, m_ = m, n = src.cols, mn = std::max(m,n), |
|
nm = std::min(m, n), nb = _src2.cols, lwork=-1, liwork=0, iwork1=0, |
|
lda = m, ldx = mn, info=0, rank=0, *iwork=0; |
|
int elem_size = CV_ELEM_SIZE(type); |
|
bool copy_rhs=false; |
|
int buf_size=0; |
|
AutoBuffer<uchar> buffer; |
|
uchar* ptr; |
|
char N[] = {'N', '\0'}, L[] = {'L', '\0'}; |
|
|
|
Mat src2 = _src2; |
|
dst.create( src.cols, src2.cols, src.type() ); |
|
|
|
if( m <= n ) |
|
is_normal = false; |
|
else if( is_normal ) |
|
m_ = n; |
|
|
|
buf_size += (is_normal ? n*n : m*n)*elem_size; |
|
|
|
if( m_ != n || nb > 1 || !dst.isContinuous() ) |
|
{ |
|
copy_rhs = true; |
|
if( is_normal ) |
|
buf_size += n*nb*elem_size; |
|
else |
|
buf_size += mn*nb*elem_size; |
|
} |
|
|
|
if( method == DECOMP_SVD || method == DECOMP_EIG ) |
|
{ |
|
integer nlvl = cvRound(std::log(std::max(std::min(m_,n)/25., 1.))/CV_LOG2) + 1; |
|
liwork = std::min(m_,n)*(3*std::max(nlvl,(integer)0) + 11); |
|
|
|
if( type == CV_32F ) |
|
sgelsd_(&m_, &n, &nb, (float*)src.data, &lda, (float*)dst.data, &ldx, |
|
&fs1, &frcond, &rank, &fwork1, &lwork, &iwork1, &info); |
|
else |
|
dgelsd_(&m_, &n, &nb, (double*)src.data, &lda, (double*)dst.data, &ldx, |
|
&s1, &rcond, &rank, &work1, &lwork, &iwork1, &info ); |
|
buf_size += nm*elem_size + (liwork + 1)*sizeof(integer); |
|
} |
|
else if( method == DECOMP_QR ) |
|
{ |
|
if( type == CV_32F ) |
|
sgels_(N, &m_, &n, &nb, (float*)src.data, &lda, |
|
(float*)dst.data, &ldx, &fwork1, &lwork, &info ); |
|
else |
|
dgels_(N, &m_, &n, &nb, (double*)src.data, &lda, |
|
(double*)dst.data, &ldx, &work1, &lwork, &info ); |
|
} |
|
else if( method == DECOMP_LU ) |
|
{ |
|
buf_size += (n+1)*sizeof(integer); |
|
} |
|
else if( method == DECOMP_CHOLESKY ) |
|
; |
|
else |
|
CV_Error( CV_StsBadArg, "Unknown method" ); |
|
assert(info == 0); |
|
|
|
lwork = cvRound(type == CV_32F ? (double)fwork1 : work1); |
|
buf_size += lwork*elem_size; |
|
buffer.allocate(buf_size); |
|
ptr = (uchar*)buffer; |
|
|
|
Mat at(n, m_, type, ptr); |
|
ptr += n*m_*elem_size; |
|
|
|
if( method == DECOMP_CHOLESKY || method == DECOMP_EIG ) |
|
src.copyTo(at); |
|
else if( !is_normal ) |
|
transpose(src, at); |
|
else |
|
mulTransposed(src, at, true); |
|
|
|
Mat xt; |
|
if( !is_normal ) |
|
{ |
|
if( copy_rhs ) |
|
{ |
|
Mat temp(nb, mn, type, ptr); |
|
ptr += nb*mn*elem_size; |
|
Mat bt = temp.colRange(0, m); |
|
xt = temp.colRange(0, n); |
|
transpose(src2, bt); |
|
} |
|
else |
|
{ |
|
src2.copyTo(dst); |
|
xt = Mat(1, n, type, dst.data); |
|
} |
|
} |
|
else |
|
{ |
|
if( copy_rhs ) |
|
{ |
|
xt = Mat(nb, n, type, ptr); |
|
ptr += nb*n*elem_size; |
|
} |
|
else |
|
xt = Mat(1, n, type, dst.data); |
|
// (a'*b)' = b'*a |
|
gemm( src2, src, 1, Mat(), 0, xt, GEMM_1_T ); |
|
} |
|
|
|
lda = (int)(at.step ? at.step/elem_size : at.cols); |
|
ldx = (int)(xt.step ? xt.step/elem_size : (!is_normal && copy_rhs ? mn : n)); |
|
|
|
if( method == DECOMP_SVD || method == DECOMP_EIG ) |
|
{ |
|
if( type == CV_32F ) |
|
{ |
|
fs = (float*)ptr; |
|
ptr += nm*elem_size; |
|
fwork = (float*)ptr; |
|
ptr += lwork*elem_size; |
|
iwork = (integer*)cvAlignPtr(ptr, sizeof(integer)); |
|
|
|
sgelsd_(&m_, &n, &nb, (float*)at.data, &lda, (float*)xt.data, &ldx, |
|
fs, &frcond, &rank, fwork, &lwork, iwork, &info); |
|
} |
|
else |
|
{ |
|
s = (double*)ptr; |
|
ptr += nm*elem_size; |
|
work = (double*)ptr; |
|
ptr += lwork*elem_size; |
|
iwork = (integer*)cvAlignPtr(ptr, sizeof(integer)); |
|
|
|
dgelsd_(&m_, &n, &nb, (double*)at.data, &lda, (double*)xt.data, &ldx, |
|
s, &rcond, &rank, work, &lwork, iwork, &info); |
|
} |
|
} |
|
else if( method == CV_QR ) |
|
{ |
|
if( type == CV_32F ) |
|
{ |
|
fwork = (float*)ptr; |
|
sgels_(N, &m_, &n, &nb, (float*)at.data, &lda, |
|
(float*)xt.data, &ldx, fwork, &lwork, &info); |
|
} |
|
else |
|
{ |
|
work = (double*)ptr; |
|
dgels_(N, &m_, &n, &nb, (double*)at.data, &lda, |
|
(double*)xt.data, &ldx, work, &lwork, &info); |
|
} |
|
} |
|
else if( method == CV_CHOLESKY || (method == CV_LU && is_normal) ) |
|
{ |
|
if( type == CV_32F ) |
|
{ |
|
spotrf_(L, &n, (float*)at.data, &lda, &info); |
|
if(info==0) |
|
spotrs_(L, &n, &nb, (float*)at.data, &lda, (float*)xt.data, &ldx, &info); |
|
} |
|
else |
|
{ |
|
dpotrf_(L, &n, (double*)at.data, &lda, &info); |
|
if(info==0) |
|
dpotrs_(L, &n, &nb, (double*)at.data, &lda, (double*)xt.data, &ldx, &info); |
|
} |
|
} |
|
else if( method == CV_LU ) |
|
{ |
|
iwork = (integer*)cvAlignPtr(ptr, sizeof(integer)); |
|
if( type == CV_32F ) |
|
sgesv_(&n, &nb, (float*)at.data, &lda, iwork, (float*)xt.data, &ldx, &info ); |
|
else |
|
dgesv_(&n, &nb, (double*)at.data, &lda, iwork, (double*)xt.data, &ldx, &info ); |
|
} |
|
else |
|
assert(0); |
|
result = info == 0; |
|
|
|
if( !result ) |
|
dst = Scalar(0); |
|
else if( xt.data != dst.data ) |
|
transpose( xt, dst ); |
|
|
|
return result; |
|
} |
|
|
|
|
|
/////////////////// finding eigenvalues and eigenvectors of a symmetric matrix /////////////// |
|
|
|
template<typename Real> static inline Real hypot(Real a, Real b) |
|
{ |
|
a = std::abs(a); |
|
b = std::abs(b); |
|
Real f; |
|
if( a > b ) |
|
{ |
|
f = b/a; |
|
return a*std::sqrt(1 + f*f); |
|
} |
|
if( b == 0 ) |
|
return 0; |
|
f = a/b; |
|
return b*std::sqrt(1 + f*f); |
|
} |
|
|
|
|
|
template<typename Real> bool jacobi(const Mat& _S0, Mat& _e, Mat& matE, bool computeEvects, Real eps) |
|
{ |
|
int n = _S0.cols, i, j, k, m; |
|
|
|
if( computeEvects ) |
|
matE = Mat::eye(n, n, _S0.type()); |
|
|
|
int iters, maxIters = n*n*30; |
|
|
|
AutoBuffer<uchar> buf(n*2*sizeof(int) + (n*n+n*2+1)*sizeof(Real)); |
|
Real* S = alignPtr((Real*)(uchar*)buf, sizeof(Real)); |
|
Real* maxSR = S + n*n; |
|
Real* maxSC = maxSR + n; |
|
int* indR = (int*)(maxSC + n); |
|
int* indC = indR + n; |
|
|
|
Mat matS(_S0.size(), _S0.type(), S); |
|
_S0.copyTo(matS); |
|
|
|
Real mv; |
|
Real* E = (Real*)matE.data; |
|
Real* e = (Real*)_e.data; |
|
int Sstep = (int)(matS.step/sizeof(Real)); |
|
int estep = _e.rows == 1 ? 1 : (int)(_e.step/sizeof(Real)); |
|
int Estep = (int)(matE.step/sizeof(Real)); |
|
|
|
for( k = 0; k < n; k++ ) |
|
{ |
|
e[k*estep] = S[(Sstep + 1)*k]; |
|
if( k < n - 1 ) |
|
{ |
|
for( m = k+1, mv = std::abs(S[Sstep*k + m]), i = k+2; i < n; i++ ) |
|
{ |
|
Real v = std::abs(S[Sstep*k+i]); |
|
if( mv < v ) |
|
mv = v, m = i; |
|
} |
|
maxSR[k] = mv; |
|
indR[k] = m; |
|
} |
|
if( k > 0 ) |
|
{ |
|
for( m = 0, mv = std::abs(S[k]), i = 1; i < k; i++ ) |
|
{ |
|
Real v = std::abs(S[Sstep*i+k]); |
|
if( mv < v ) |
|
mv = v, m = i; |
|
} |
|
maxSC[k] = mv; |
|
indC[k] = m; |
|
} |
|
} |
|
|
|
for( iters = 0; iters < maxIters; iters++ ) |
|
{ |
|
// find index (k,l) of pivot p |
|
for( k = 0, mv = maxSR[0], i = 1; i < n-1; i++ ) |
|
{ |
|
Real v = maxSR[i]; |
|
if( mv < v ) |
|
mv = v, k = i; |
|
} |
|
int l = indR[k]; |
|
for( i = 1; i < n; i++ ) |
|
{ |
|
Real v = maxSC[i]; |
|
if( mv < v ) |
|
mv = v, k = indC[i], l = i; |
|
} |
|
|
|
Real p = S[Sstep*k + l]; |
|
if( std::abs(p) <= eps ) |
|
break; |
|
Real y = Real((e[estep*l] - e[estep*k])*0.5); |
|
Real t = std::abs(y) + hypot(p, y); |
|
Real s = hypot(p, t); |
|
Real c = t/s; |
|
s = p/s; t = (p/t)*p; |
|
if( y < 0 ) |
|
s = -s, t = -t; |
|
S[Sstep*k + l] = 0; |
|
|
|
e[estep*k] -= t; |
|
e[estep*l] += t; |
|
|
|
Real a0, b0; |
|
|
|
#undef rotate |
|
#define rotate(v0, v1) a0 = v0, b0 = v1, v0 = a0*c - b0*s, v1 = a0*s + b0*c |
|
|
|
// rotate rows and columns k and l |
|
for( i = 0; i < k; i++ ) |
|
rotate(S[Sstep*i+k], S[Sstep*i+l]); |
|
for( i = k+1; i < l; i++ ) |
|
rotate(S[Sstep*k+i], S[Sstep*i+l]); |
|
for( i = l+1; i < n; i++ ) |
|
rotate(S[Sstep*k+i], S[Sstep*l+i]); |
|
|
|
// rotate eigenvectors |
|
if( computeEvects ) |
|
for( i = 0; i < n; i++ ) |
|
rotate(E[Estep*k+i], E[Estep*l+i]); |
|
|
|
#undef rotate |
|
|
|
for( j = 0; j < 2; j++ ) |
|
{ |
|
int idx = j == 0 ? k : l; |
|
if( idx < n - 1 ) |
|
{ |
|
for( m = idx+1, mv = std::abs(S[Sstep*idx + m]), i = idx+2; i < n; i++ ) |
|
{ |
|
Real v = std::abs(S[Sstep*idx+i]); |
|
if( mv < v ) |
|
mv = v, m = i; |
|
} |
|
maxSR[idx] = mv; |
|
indR[idx] = m; |
|
} |
|
if( idx > 0 ) |
|
{ |
|
for( m = 0, mv = std::abs(S[idx]), i = 1; i < idx; i++ ) |
|
{ |
|
Real v = std::abs(S[Sstep*i+idx]); |
|
if( mv < v ) |
|
mv = v, m = i; |
|
} |
|
maxSC[idx] = mv; |
|
indC[idx] = m; |
|
} |
|
} |
|
} |
|
|
|
// sort eigenvalues & eigenvectors |
|
for( k = 0; k < n-1; k++ ) |
|
{ |
|
m = k; |
|
for( i = k+1; i < n; i++ ) |
|
{ |
|
if( e[estep*m] < e[estep*i] ) |
|
m = i; |
|
} |
|
if( k != m ) |
|
{ |
|
std::swap(e[estep*m], e[estep*k]); |
|
if( computeEvects ) |
|
for( i = 0; i < n; i++ ) |
|
std::swap(E[Estep*m + i], E[Estep*k + i]); |
|
} |
|
} |
|
|
|
return true; |
|
} |
|
|
|
|
|
static bool eigen( const Mat& src, Mat& evals, Mat& evects, bool computeEvects, |
|
int lowindex, int highindex ) |
|
{ |
|
int type = src.type(); |
|
integer n = src.rows; |
|
|
|
// If a range is selected both limits are needed. |
|
CV_Assert( ( lowindex >= 0 && highindex >= 0 ) || |
|
( lowindex < 0 && highindex < 0 ) ); |
|
|
|
// lapack sorts from lowest to highest so we flip |
|
integer il = n - highindex; |
|
integer iu = n - lowindex; |
|
|
|
CV_Assert( src.rows == src.cols ); |
|
CV_Assert (type == CV_32F || type == CV_64F); |
|
|
|
// allow for 1xn eigenvalue matrix too |
|
if( !(evals.rows == 1 && evals.cols == n && evals.type() == type) ) |
|
evals.create(n, 1, type); |
|
|
|
if( n <= 20 ) |
|
{ |
|
if( type == CV_32F ) |
|
return jacobi<float>(src, evals, evects, computeEvects, FLT_EPSILON); |
|
else |
|
return jacobi<double>(src, evals, evects, computeEvects, DBL_EPSILON); |
|
} |
|
|
|
bool result; |
|
integer m=0, lda, ldv=n, lwork=-1, iwork1=0, liwork=-1, idummy=0, info=0; |
|
integer *isupport, *iwork; |
|
char job[] = { computeEvects ? 'V' : 'N', '\0' }; |
|
char range[2] = "I"; |
|
range[0] = (il < n + 1) ? 'I' : 'A'; |
|
|
|
char L[] = {'L', '\0'}; |
|
uchar* work; |
|
|
|
AutoBuffer<uchar> buf; |
|
|
|
int elem_size = (int)src.elemSize(); |
|
lda = (int)(src.step/elem_size); |
|
|
|
if( computeEvects ) |
|
{ |
|
evects.create(n, n, type); |
|
ldv = (int)(evects.step/elem_size); |
|
} |
|
|
|
bool copy_evals = !evals.isContinuous(); |
|
|
|
if( type == CV_32FC1 ) |
|
{ |
|
float work1 = 0, dummy = 0, abstol = 0, *s; |
|
|
|
ssyevr_(job, range, L, &n, (float*)src.data, &lda, &dummy, &dummy, &il, &iu, |
|
&abstol, &m, (float*)evals.data, (float*)evects.data, &ldv, |
|
&idummy, &work1, &lwork, &iwork1, &liwork, &info ); |
|
assert( info == 0 ); |
|
|
|
lwork = cvRound(work1); |
|
liwork = iwork1; |
|
buf.allocate((lwork + n*n + (copy_evals ? n : 0))*elem_size + |
|
(liwork+2*n+1)*sizeof(integer)); |
|
Mat a(n, n, type, (uchar*)buf); |
|
src.copyTo(a); |
|
lda = (integer)a.step1(); |
|
work = a.data + n*n*elem_size; |
|
if( copy_evals ) |
|
s = (float*)(work + lwork*elem_size); |
|
else |
|
s = (float*)evals.data; |
|
|
|
iwork = (integer*)cvAlignPtr(work + (lwork + (copy_evals ? n : 0))*elem_size, sizeof(integer)); |
|
isupport = iwork + liwork; |
|
|
|
ssyevr_(job, range, L, &n, (float*)a.data, &lda, &dummy, &dummy, |
|
&il, &iu, &abstol, &m, s, (float*)evects.data, |
|
&ldv, isupport, (float*)work, &lwork, iwork, &liwork, &info ); |
|
result = info == 0; |
|
} |
|
else |
|
{ |
|
double work1 = 0, dummy = 0, abstol = 0, *s; |
|
|
|
dsyevr_(job, range, L, &n, (double*)src.data, &lda, &dummy, &dummy, &il, &iu, |
|
&abstol, &m, (double*)evals.data, (double*)evects.data, &ldv, |
|
&idummy, &work1, &lwork, &iwork1, &liwork, &info ); |
|
assert( info == 0 ); |
|
|
|
lwork = cvRound(work1); |
|
liwork = iwork1; |
|
buf.allocate((lwork + n*n + (copy_evals ? n : 0))*elem_size + |
|
(liwork+2*n+1)*sizeof(integer)); |
|
Mat a(n, n, type, (uchar*)buf); |
|
src.copyTo(a); |
|
lda = (integer)a.step1(); |
|
work = a.data + n*n*elem_size; |
|
|
|
if( copy_evals ) |
|
s = (double*)(work + lwork*elem_size); |
|
else |
|
s = (double*)evals.data; |
|
|
|
iwork = (integer*)cvAlignPtr(work + (lwork + (copy_evals ? n : 0))*elem_size, sizeof(integer)); |
|
isupport = iwork + liwork; |
|
|
|
dsyevr_(job, range, L, &n, (double*)a.data, &lda, &dummy, &dummy, |
|
&il, &iu, &abstol, &m, s, (double*)evects.data, |
|
&ldv, isupport, (double*)work, &lwork, iwork, &liwork, &info ); |
|
result = info == 0; |
|
} |
|
|
|
if( copy_evals ) |
|
Mat(evals.rows, evals.cols, type, work + lwork*elem_size).copyTo(evals); |
|
|
|
if( il < n + 1 && n > 20 ) { |
|
int nVV = iu - il + 1; |
|
if( computeEvects ) { |
|
Mat flipme = evects.rowRange(0, nVV); |
|
flip(flipme, flipme, 0); |
|
flipme = evals.rowRange(0, nVV); |
|
flip(flipme, flipme, 0); |
|
} |
|
} else { |
|
flip(evals, evals, evals.rows > 1 ? 0 : 1); |
|
if( computeEvects ) |
|
flip(evects, evects, 0); |
|
} |
|
|
|
return result; |
|
} |
|
|
|
bool eigen( const Mat& src, Mat& evals, int lowindex, int highindex ) |
|
{ |
|
Mat evects; |
|
return eigen(src, evals, evects, false, lowindex, highindex); |
|
} |
|
|
|
bool eigen( const Mat& src, Mat& evals, Mat& evects, int lowindex, |
|
int highindex ) |
|
{ |
|
return eigen(src, evals, evects, true, lowindex, highindex); |
|
} |
|
|
|
|
|
|
|
/* y[0:m,0:n] += diag(a[0:1,0:m]) * x[0:m,0:n] */ |
|
template<typename T1, typename T2, typename T3> static void |
|
MatrAXPY( int m, int n, const T1* x, int dx, |
|
const T2* a, int inca, T3* y, int dy ) |
|
{ |
|
int i, j; |
|
for( i = 0; i < m; i++, x += dx, y += dy ) |
|
{ |
|
T2 s = a[i*inca]; |
|
for( j = 0; j <= n - 4; j += 4 ) |
|
{ |
|
T3 t0 = (T3)(y[j] + s*x[j]); |
|
T3 t1 = (T3)(y[j+1] + s*x[j+1]); |
|
y[j] = t0; |
|
y[j+1] = t1; |
|
t0 = (T3)(y[j+2] + s*x[j+2]); |
|
t1 = (T3)(y[j+3] + s*x[j+3]); |
|
y[j+2] = t0; |
|
y[j+3] = t1; |
|
} |
|
|
|
for( ; j < n; j++ ) |
|
y[j] = (T3)(y[j] + s*x[j]); |
|
} |
|
} |
|
|
|
template<typename T> static void |
|
SVBkSb( int m, int n, const T* w, int incw, |
|
const T* u, int ldu, int uT, |
|
const T* v, int ldv, int vT, |
|
const T* b, int ldb, int nb, |
|
T* x, int ldx, double* buffer, T eps ) |
|
{ |
|
double threshold = 0; |
|
int udelta0 = uT ? ldu : 1, udelta1 = uT ? 1 : ldu; |
|
int vdelta0 = vT ? ldv : 1, vdelta1 = vT ? 1 : ldv; |
|
int i, j, nm = std::min(m, n); |
|
|
|
if( !b ) |
|
nb = m; |
|
|
|
for( i = 0; i < n; i++ ) |
|
for( j = 0; j < nb; j++ ) |
|
x[i*ldx + j] = 0; |
|
|
|
for( i = 0; i < nm; i++ ) |
|
threshold += w[i*incw]; |
|
threshold *= eps; |
|
|
|
// v * inv(w) * uT * b |
|
for( i = 0; i < nm; i++, u += udelta0, v += vdelta0 ) |
|
{ |
|
double wi = w[i*incw]; |
|
if( wi <= threshold ) |
|
continue; |
|
wi = 1/wi; |
|
|
|
if( nb == 1 ) |
|
{ |
|
double s = 0; |
|
if( b ) |
|
for( j = 0; j < m; j++ ) |
|
s += u[j*udelta1]*b[j*ldb]; |
|
else |
|
s = u[0]; |
|
s *= wi; |
|
|
|
for( j = 0; j < n; j++ ) |
|
x[j*ldx] = (T)(x[j*ldx] + s*v[j*vdelta1]); |
|
} |
|
else |
|
{ |
|
if( b ) |
|
{ |
|
for( j = 0; j < nb; j++ ) |
|
buffer[j] = 0; |
|
MatrAXPY( m, nb, b, ldb, u, udelta1, buffer, 0 ); |
|
for( j = 0; j < nb; j++ ) |
|
buffer[j] *= wi; |
|
} |
|
else |
|
{ |
|
for( j = 0; j < nb; j++ ) |
|
buffer[j] = u[j*udelta1]*wi; |
|
} |
|
MatrAXPY( n, nb, buffer, 0, v, vdelta1, x, ldx ); |
|
} |
|
} |
|
} |
|
|
|
|
|
static void _SVDcompute( const Mat& a, Mat& w, Mat* u, Mat* vt, int flags ) |
|
{ |
|
integer m = a.rows, n = a.cols, mn = std::max(m, n), nm = std::min(m, n); |
|
int type = a.type(), elem_size = (int)a.elemSize(); |
|
bool compute_uv = u && vt; |
|
|
|
if( flags & SVD::NO_UV ) |
|
{ |
|
if(u) u->release(); |
|
if(vt) vt->release(); |
|
u = vt = 0; |
|
compute_uv = false; |
|
} |
|
|
|
if( compute_uv ) |
|
{ |
|
u->create( (int)m, (int)((flags & SVD::FULL_UV) ? m : nm), type ); |
|
vt->create( (int)((flags & SVD::FULL_UV) ? n : nm), n, type ); |
|
} |
|
|
|
w.create(nm, 1, type); |
|
|
|
Mat _a = a; |
|
int a_ofs = 0, work_ofs=0, iwork_ofs=0, buf_size = 0; |
|
bool temp_a = false; |
|
double u1=0, v1=0, work1=0; |
|
float uf1=0, vf1=0, workf1=0; |
|
integer lda, ldu, ldv, lwork=-1, iwork1=0, info=0; |
|
char mode[] = {compute_uv ? 'S' : 'N', '\0'}; |
|
|
|
if( m != n && compute_uv && (flags & SVD::FULL_UV) ) |
|
mode[0] = 'A'; |
|
|
|
if( !(flags & SVD::MODIFY_A) ) |
|
{ |
|
if( mode[0] == 'N' || mode[0] == 'A' ) |
|
temp_a = true; |
|
else if( compute_uv && (a.size() == vt->size() || a.size() == u->size()) && mode[0] == 'S' ) |
|
mode[0] = 'O'; |
|
} |
|
|
|
lda = a.cols; |
|
ldv = ldu = mn; |
|
|
|
if( type == CV_32F ) |
|
{ |
|
sgesdd_(mode, &n, &m, (float*)a.data, &lda, (float*)w.data, |
|
&vf1, &ldv, &uf1, &ldu, &workf1, &lwork, &iwork1, &info ); |
|
lwork = cvRound(workf1); |
|
} |
|
else |
|
{ |
|
dgesdd_(mode, &n, &m, (double*)a.data, &lda, (double*)w.data, |
|
&v1, &ldv, &u1, &ldu, &work1, &lwork, &iwork1, &info ); |
|
lwork = cvRound(work1); |
|
} |
|
|
|
assert(info == 0); |
|
if( temp_a ) |
|
{ |
|
a_ofs = buf_size; |
|
buf_size += n*m*elem_size; |
|
} |
|
work_ofs = buf_size; |
|
buf_size += lwork*elem_size; |
|
buf_size = cvAlign(buf_size, sizeof(integer)); |
|
iwork_ofs = buf_size; |
|
buf_size += 8*nm*sizeof(integer); |
|
|
|
AutoBuffer<uchar> buf(buf_size); |
|
uchar* buffer = (uchar*)buf; |
|
|
|
if( temp_a ) |
|
{ |
|
_a = Mat(a.rows, a.cols, type, buffer ); |
|
a.copyTo(_a); |
|
} |
|
|
|
if( !(flags & SVD::MODIFY_A) && !temp_a ) |
|
{ |
|
if( compute_uv && a.size() == vt->size() ) |
|
{ |
|
a.copyTo(*vt); |
|
_a = *vt; |
|
} |
|
else if( compute_uv && a.size() == u->size() ) |
|
{ |
|
a.copyTo(*u); |
|
_a = *u; |
|
} |
|
} |
|
|
|
if( compute_uv ) |
|
{ |
|
ldv = (int)(vt->step ? vt->step/elem_size : vt->cols); |
|
ldu = (int)(u->step ? u->step/elem_size : u->cols); |
|
} |
|
|
|
lda = (int)(_a.step ? _a.step/elem_size : _a.cols); |
|
if( type == CV_32F ) |
|
{ |
|
sgesdd_(mode, &n, &m, (float*)_a.data, &lda, (float*)w.data, |
|
vt ? (float*)vt->data : (float*)&v1, &ldv, u ? (float*)u->data : (float*)&u1, &ldu, |
|
(float*)(buffer + work_ofs), &lwork, (integer*)(buffer + iwork_ofs), &info ); |
|
} |
|
else |
|
{ |
|
dgesdd_(mode, &n, &m, (double*)_a.data, &lda, (double*)w.data, |
|
vt ? (double*)vt->data : &v1, &ldv, u ? (double*)u->data : &u1, &ldu, |
|
(double*)(buffer + work_ofs), &lwork, (integer*)(buffer + iwork_ofs), &info ); |
|
} |
|
CV_Assert(info >= 0); |
|
if(info != 0) |
|
{ |
|
*u = Scalar(0.); |
|
*vt = Scalar(0.); |
|
w = Scalar(0.); |
|
} |
|
} |
|
|
|
|
|
void SVD::compute( const Mat& a, Mat& w, Mat& u, Mat& vt, int flags ) |
|
{ |
|
_SVDcompute(a, w, &u, &vt, flags); |
|
} |
|
|
|
void SVD::compute( const Mat& a, Mat& w, int flags ) |
|
{ |
|
_SVDcompute(a, w, 0, 0, flags); |
|
} |
|
|
|
void SVD::backSubst( const Mat& w, const Mat& u, const Mat& vt, const Mat& rhs, Mat& dst ) |
|
{ |
|
int type = w.type(), esz = (int)w.elemSize(); |
|
int m = u.rows, n = vt.cols, nb = rhs.data ? rhs.cols : m; |
|
AutoBuffer<double> buffer(nb); |
|
CV_Assert( u.data && vt.data && w.data ); |
|
|
|
CV_Assert( rhs.data == 0 || (rhs.type() == type && rhs.rows == m) ); |
|
|
|
dst.create( n, nb, type ); |
|
if( type == CV_32F ) |
|
SVBkSb(m, n, (float*)w.data, 1, (float*)u.data, (int)(u.step/esz), false, |
|
(float*)vt.data, (int)(vt.step/esz), true, (float*)rhs.data, (int)(rhs.step/esz), |
|
nb, (float*)dst.data, (int)(dst.step/esz), buffer, 10*FLT_EPSILON ); |
|
else if( type == CV_64F ) |
|
SVBkSb(m, n, (double*)w.data, 1, (double*)u.data, (int)(u.step/esz), false, |
|
(double*)vt.data, (int)(vt.step/esz), true, (double*)rhs.data, (int)(rhs.step/esz), |
|
nb, (double*)dst.data, (int)(dst.step/esz), buffer, 2*DBL_EPSILON ); |
|
else |
|
CV_Error( CV_StsUnsupportedFormat, "" ); |
|
} |
|
|
|
|
|
SVD& SVD::operator ()(const Mat& a, int flags) |
|
{ |
|
_SVDcompute(a, w, &u, &vt, flags); |
|
return *this; |
|
} |
|
|
|
|
|
void SVD::backSubst( const Mat& rhs, Mat& dst ) const |
|
{ |
|
backSubst( w, u, vt, rhs, dst ); |
|
} |
|
|
|
} |
|
|
|
|
|
CV_IMPL double |
|
cvDet( const CvArr* arr ) |
|
{ |
|
if( CV_IS_MAT(arr) && ((CvMat*)arr)->rows <= 3 ) |
|
{ |
|
CvMat* mat = (CvMat*)arr; |
|
int type = CV_MAT_TYPE(mat->type); |
|
int rows = mat->rows; |
|
uchar* m = mat->data.ptr; |
|
int step = mat->step; |
|
CV_Assert( rows == mat->cols ); |
|
|
|
#define Mf(y, x) ((float*)(m + y*step))[x] |
|
#define Md(y, x) ((double*)(m + y*step))[x] |
|
|
|
if( type == CV_32F ) |
|
{ |
|
if( rows == 2 ) |
|
return det2(Mf); |
|
if( rows == 3 ) |
|
return det3(Mf); |
|
} |
|
else if( type == CV_64F ) |
|
{ |
|
if( rows == 2 ) |
|
return det2(Md); |
|
if( rows == 3 ) |
|
return det3(Md); |
|
} |
|
return cv::determinant(cv::Mat(mat)); |
|
} |
|
return cv::determinant(cv::cvarrToMat(arr)); |
|
} |
|
|
|
|
|
CV_IMPL double |
|
cvInvert( const CvArr* srcarr, CvArr* dstarr, int method ) |
|
{ |
|
cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr); |
|
|
|
CV_Assert( src.type() == dst.type() && src.rows == dst.cols && src.cols == dst.rows ); |
|
return cv::invert( src, dst, method == CV_CHOLESKY ? cv::DECOMP_CHOLESKY : |
|
method == CV_SVD || method == CV_SVD_SYM ? cv::DECOMP_SVD : cv::DECOMP_LU ); |
|
} |
|
|
|
|
|
CV_IMPL int |
|
cvSolve( const CvArr* Aarr, const CvArr* barr, CvArr* xarr, int method ) |
|
{ |
|
cv::Mat A = cv::cvarrToMat(Aarr), b = cv::cvarrToMat(barr), x = cv::cvarrToMat(xarr); |
|
|
|
CV_Assert( A.type() == x.type() && A.cols == x.rows && x.cols == b.cols ); |
|
return cv::solve( A, b, x, method == CV_CHOLESKY ? cv::DECOMP_CHOLESKY : |
|
method == CV_SVD || method == CV_SVD_SYM ? cv::DECOMP_SVD : |
|
A.rows > A.cols ? cv::DECOMP_QR : cv::DECOMP_LU ); |
|
} |
|
|
|
|
|
CV_IMPL void |
|
cvEigenVV( CvArr* srcarr, CvArr* evectsarr, CvArr* evalsarr, double, |
|
int lowindex, int highindex) |
|
{ |
|
cv::Mat src = cv::cvarrToMat(srcarr), evals = cv::cvarrToMat(evalsarr); |
|
if( evectsarr ) |
|
{ |
|
cv::Mat evects = cv::cvarrToMat(evectsarr); |
|
eigen(src, evals, evects, lowindex, highindex); |
|
} |
|
else |
|
eigen(src, evals, lowindex, highindex); |
|
} |
|
|
|
|
|
CV_IMPL void |
|
cvSVD( CvArr* aarr, CvArr* warr, CvArr* uarr, CvArr* varr, int flags ) |
|
{ |
|
cv::Mat a = cv::cvarrToMat(aarr), w = cv::cvarrToMat(warr), u, v; |
|
int m = a.rows, n = a.cols, type = a.type(), mn = std::max(m, n), nm = std::min(m, n); |
|
|
|
CV_Assert( w.type() == type && |
|
(w.size() == cv::Size(nm,1) || w.size() == cv::Size(1, nm) || |
|
w.size() == cv::Size(nm, nm) || w.size() == cv::Size(n, m)) ); |
|
|
|
cv::SVD svd; |
|
|
|
if( w.size() == cv::Size(nm, 1) ) |
|
svd.w = cv::Mat(nm, 1, type, w.data ); |
|
else if( w.isContinuous() ) |
|
svd.w = w; |
|
|
|
if( uarr ) |
|
{ |
|
u = cv::cvarrToMat(uarr); |
|
CV_Assert( u.type() == type ); |
|
svd.u = u; |
|
} |
|
|
|
if( varr ) |
|
{ |
|
v = cv::cvarrToMat(varr); |
|
CV_Assert( v.type() == type ); |
|
svd.vt = v; |
|
} |
|
|
|
svd(a, ((flags & CV_SVD_MODIFY_A) ? cv::SVD::MODIFY_A : 0) | |
|
((!svd.u.data && !svd.vt.data) ? cv::SVD::NO_UV : 0) | |
|
((m != n && (svd.u.size() == cv::Size(mn, mn) || |
|
svd.vt.size() == cv::Size(mn, mn))) ? cv::SVD::FULL_UV : 0)); |
|
|
|
if( u.data ) |
|
{ |
|
if( flags & CV_SVD_U_T ) |
|
cv::transpose( svd.u, u ); |
|
else if( u.data != svd.u.data ) |
|
{ |
|
CV_Assert( u.size() == svd.u.size() ); |
|
svd.u.copyTo(u); |
|
} |
|
} |
|
|
|
if( v.data ) |
|
{ |
|
if( !(flags & CV_SVD_V_T) ) |
|
cv::transpose( svd.vt, v ); |
|
else if( v.data != svd.vt.data ) |
|
{ |
|
CV_Assert( v.size() == svd.vt.size() ); |
|
svd.vt.copyTo(v); |
|
} |
|
} |
|
|
|
if( w.data != svd.w.data ) |
|
{ |
|
if( w.size() == svd.w.size() ) |
|
svd.w.copyTo(w); |
|
else |
|
{ |
|
w = cv::Scalar(0); |
|
cv::Mat wd = w.diag(); |
|
svd.w.copyTo(wd); |
|
} |
|
} |
|
} |
|
|
|
|
|
CV_IMPL void |
|
cvSVBkSb( const CvArr* warr, const CvArr* uarr, |
|
const CvArr* varr, const CvArr* rhsarr, |
|
CvArr* dstarr, int flags ) |
|
{ |
|
cv::Mat w = cv::cvarrToMat(warr), u = cv::cvarrToMat(uarr), |
|
v = cv::cvarrToMat(varr), rhs, dst = cv::cvarrToMat(dstarr); |
|
int type = w.type(); |
|
bool uT = (flags & CV_SVD_U_T) != 0, vT = (flags & CV_SVD_V_T) != 0; |
|
int m = !uT ? u.rows : u.cols; |
|
int n = vT ? v.cols : v.rows; |
|
int nm = std::min(n, m), nb; |
|
int esz = (int)w.elemSize(); |
|
int incw = w.size() == cv::Size(nm, 1) ? 1 : (int)(w.step/esz) + (w.cols > 1 && w.rows > 1); |
|
|
|
CV_Assert( type == u.type() && type == v.type() && |
|
type == dst.type() && dst.rows == n && |
|
(!uT ? u.cols : u.rows) >= nm && (vT ? v.rows : v.cols) >= nm && |
|
(w.size() == cv::Size(nm, 1) || w.size() == cv::Size(1, nm) || |
|
w.size() == cv::Size(nm, nm) || w.size() == cv::Size(n, m))); |
|
|
|
if( rhsarr ) |
|
{ |
|
rhs = cv::cvarrToMat(rhsarr); |
|
nb = rhs.cols; |
|
CV_Assert( type == rhs.type() ); |
|
} |
|
else |
|
nb = m; |
|
|
|
CV_Assert( dst.cols == nb ); |
|
cv::AutoBuffer<double> buffer(nb); |
|
|
|
if( type == CV_32F ) |
|
cv::SVBkSb(m, n, (float*)w.data, incw, (float*)u.data, (int)(u.step/esz), uT, |
|
(float*)v.data, (int)(v.step/esz), vT, (float*)rhs.data, (int)(rhs.step/esz), |
|
nb, (float*)dst.data, (int)(dst.step/esz), buffer, 2*FLT_EPSILON ); |
|
else |
|
cv::SVBkSb(m, n, (double*)w.data, incw, (double*)u.data, (int)(u.step/esz), uT, |
|
(double*)v.data, (int)(v.step/esz), vT, (double*)rhs.data, (int)(rhs.step/esz), |
|
nb, (double*)dst.data, (int)(dst.step/esz), buffer, 2*DBL_EPSILON ); |
|
}
|
|
|