mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
154 lines
5.7 KiB
154 lines
5.7 KiB
#include <opencv2/imgproc.hpp> |
|
#include <opencv2/highgui.hpp> |
|
#include <opencv2/dnn.hpp> |
|
|
|
using namespace cv; |
|
using namespace cv::dnn; |
|
|
|
const char* keys = |
|
"{ help h | | Print help message. }" |
|
"{ input i | | Path to input image or video file. Skip this argument to capture frames from a camera.}" |
|
"{ model m | | Path to a binary .pb file contains trained network.}" |
|
"{ width | 320 | Preprocess input image by resizing to a specific width. It should be multiple by 32. }" |
|
"{ height | 320 | Preprocess input image by resizing to a specific height. It should be multiple by 32. }" |
|
"{ thr | 0.5 | Confidence threshold. }" |
|
"{ nms | 0.4 | Non-maximum suppression threshold. }"; |
|
|
|
void decode(const Mat& scores, const Mat& geometry, float scoreThresh, |
|
std::vector<RotatedRect>& detections, std::vector<float>& confidences); |
|
|
|
int main(int argc, char** argv) |
|
{ |
|
// Parse command line arguments. |
|
CommandLineParser parser(argc, argv, keys); |
|
parser.about("Use this script to run TensorFlow implementation (https://github.com/argman/EAST) of " |
|
"EAST: An Efficient and Accurate Scene Text Detector (https://arxiv.org/abs/1704.03155v2)"); |
|
if (argc == 1 || parser.has("help")) |
|
{ |
|
parser.printMessage(); |
|
return 0; |
|
} |
|
|
|
float confThreshold = parser.get<float>("thr"); |
|
float nmsThreshold = parser.get<float>("nms"); |
|
int inpWidth = parser.get<int>("width"); |
|
int inpHeight = parser.get<int>("height"); |
|
CV_Assert(parser.has("model")); |
|
String model = parser.get<String>("model"); |
|
|
|
// Load network. |
|
Net net = readNet(model); |
|
|
|
// Open a video file or an image file or a camera stream. |
|
VideoCapture cap; |
|
if (parser.has("input")) |
|
cap.open(parser.get<String>("input")); |
|
else |
|
cap.open(0); |
|
|
|
static const std::string kWinName = "EAST: An Efficient and Accurate Scene Text Detector"; |
|
namedWindow(kWinName, WINDOW_NORMAL); |
|
|
|
std::vector<Mat> outs; |
|
std::vector<String> outNames(2); |
|
outNames[0] = "feature_fusion/Conv_7/Sigmoid"; |
|
outNames[1] = "feature_fusion/concat_3"; |
|
|
|
Mat frame, blob; |
|
while (waitKey(1) < 0) |
|
{ |
|
cap >> frame; |
|
if (frame.empty()) |
|
{ |
|
waitKey(); |
|
break; |
|
} |
|
|
|
blobFromImage(frame, blob, 1.0, Size(inpWidth, inpHeight), Scalar(123.68, 116.78, 103.94), true, false); |
|
net.setInput(blob); |
|
net.forward(outs, outNames); |
|
|
|
Mat scores = outs[0]; |
|
Mat geometry = outs[1]; |
|
|
|
// Decode predicted bounding boxes. |
|
std::vector<RotatedRect> boxes; |
|
std::vector<float> confidences; |
|
decode(scores, geometry, confThreshold, boxes, confidences); |
|
|
|
// Apply non-maximum suppression procedure. |
|
std::vector<int> indices; |
|
NMSBoxes(boxes, confidences, confThreshold, nmsThreshold, indices); |
|
|
|
// Render detections. |
|
Point2f ratio((float)frame.cols / inpWidth, (float)frame.rows / inpHeight); |
|
for (size_t i = 0; i < indices.size(); ++i) |
|
{ |
|
RotatedRect& box = boxes[indices[i]]; |
|
|
|
Point2f vertices[4]; |
|
box.points(vertices); |
|
for (int j = 0; j < 4; ++j) |
|
{ |
|
vertices[j].x *= ratio.x; |
|
vertices[j].y *= ratio.y; |
|
} |
|
for (int j = 0; j < 4; ++j) |
|
line(frame, vertices[j], vertices[(j + 1) % 4], Scalar(0, 255, 0), 1); |
|
} |
|
|
|
// Put efficiency information. |
|
std::vector<double> layersTimes; |
|
double freq = getTickFrequency() / 1000; |
|
double t = net.getPerfProfile(layersTimes) / freq; |
|
std::string label = format("Inference time: %.2f ms", t); |
|
putText(frame, label, Point(0, 15), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 255, 0)); |
|
|
|
imshow(kWinName, frame); |
|
} |
|
return 0; |
|
} |
|
|
|
void decode(const Mat& scores, const Mat& geometry, float scoreThresh, |
|
std::vector<RotatedRect>& detections, std::vector<float>& confidences) |
|
{ |
|
detections.clear(); |
|
CV_Assert(scores.dims == 4, geometry.dims == 4, scores.size[0] == 1, |
|
geometry.size[0] == 1, scores.size[1] == 1, geometry.size[1] == 5, |
|
scores.size[2] == geometry.size[2], scores.size[3] == geometry.size[3]); |
|
|
|
const int height = scores.size[2]; |
|
const int width = scores.size[3]; |
|
for (int y = 0; y < height; ++y) |
|
{ |
|
const float* scoresData = scores.ptr<float>(0, 0, y); |
|
const float* x0_data = geometry.ptr<float>(0, 0, y); |
|
const float* x1_data = geometry.ptr<float>(0, 1, y); |
|
const float* x2_data = geometry.ptr<float>(0, 2, y); |
|
const float* x3_data = geometry.ptr<float>(0, 3, y); |
|
const float* anglesData = geometry.ptr<float>(0, 4, y); |
|
for (int x = 0; x < width; ++x) |
|
{ |
|
float score = scoresData[x]; |
|
if (score < scoreThresh) |
|
continue; |
|
|
|
// Decode a prediction. |
|
// Multiple by 4 because feature maps are 4 time less than input image. |
|
float offsetX = x * 4.0f, offsetY = y * 4.0f; |
|
float angle = anglesData[x]; |
|
float cosA = std::cos(angle); |
|
float sinA = std::sin(angle); |
|
float h = x0_data[x] + x2_data[x]; |
|
float w = x1_data[x] + x3_data[x]; |
|
|
|
Point2f offset(offsetX + cosA * x1_data[x] + sinA * x2_data[x], |
|
offsetY - sinA * x1_data[x] + cosA * x2_data[x]); |
|
Point2f p1 = Point2f(-sinA * h, -cosA * h) + offset; |
|
Point2f p3 = Point2f(-cosA * w, sinA * w) + offset; |
|
RotatedRect r(0.5f * (p1 + p3), Size2f(w, h), -angle * 180.0f / (float)CV_PI); |
|
detections.push_back(r); |
|
confidences.push_back(score); |
|
} |
|
} |
|
}
|
|
|