Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

393 lines
14 KiB

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Copyright (C) 2017, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "../precomp.hpp"
#include "layers_common.hpp"
#include "op_halide.hpp"
#include "opencl_kernels_dnn.hpp"
#include <opencv2/dnn/shape_utils.hpp>
#ifdef HAVE_OPENCL
using namespace cv::dnn::ocl4dnn;
#endif
namespace cv
{
namespace dnn
{
class FullyConnectedLayerImpl : public InnerProductLayer
{
public:
enum { VEC_ALIGN = 8 };
#ifdef HAVE_OPENCL
Ptr<OCL4DNNInnerProduct<float> > innerProductOp;
std::vector<UMat> umat_blobs;
#endif
FullyConnectedLayerImpl(const LayerParams& params)
{
setParamsFrom(params);
CV_Assert(1 <= blobs.size() && blobs.size() <= 2);
int numOutput = params.get<int>("num_output");
int innerSize = (int)blobs[0].total() / numOutput;
bias = params.get<bool>("bias_term", true);
axis = params.get<int>("axis", 1);
CV_Assert(blobs[0].dims >= 2 && (size_t)(innerSize * numOutput) == blobs[0].total());
CV_Assert(!bias || (blobs.size() == 2 && (size_t)numOutput == blobs[1].total()));
weightsMat = blobs[0] = blobs[0].reshape(1, numOutput);
int vecsize = weightsMat.cols;
if( vecsize % VEC_ALIGN != 0 )
{
int vecsize_aligned = (int)alignSize(vecsize, VEC_ALIGN);
Mat weightsBuf(weightsMat.rows, vecsize_aligned, weightsMat.type());
Mat wpadding = weightsBuf.colRange(vecsize, vecsize_aligned);
wpadding.setTo(Scalar::all(0.));
weightsMat = weightsBuf.colRange(0, vecsize);
blobs[0].copyTo(weightsMat);
}
if (bias)
biasMat = blobs[1] = blobs[1].reshape(1, 1);
else
biasMat = Mat::zeros(1, numOutput, weightsMat.type());
#ifdef HAVE_OPENCL
size_t n = blobs.size();
umat_blobs.resize(n);
for (int i = 0; i < n; i++) umat_blobs[i] = blobs[i].getUMat(ACCESS_READ);
#endif
}
bool getMemoryShapes(const std::vector<MatShape> &inputs,
const int requiredOutputs,
std::vector<MatShape> &outputs,
std::vector<MatShape> &) const
{
CV_Assert(inputs.size() > 0);
CV_Assert(1 <= blobs.size() && blobs.size() <= 2);
CV_Assert(blobs[0].dims == 2);
int cAxis = clamp(axis, inputs[0]);
int outerSize = total(inputs[0], 0, cAxis);
int numOutput = blobs[0].size[0];
outputs.resize(inputs.size(), shape(outerSize, numOutput));
CV_Assert(!bias || (size_t)numOutput == blobs[1].total());
return false;
}
virtual bool supportBackend(int backendId)
{
return backendId == DNN_BACKEND_DEFAULT ||
backendId == DNN_BACKEND_HALIDE && haveHalide() && axis == 1;
}
virtual bool setActivation(const Ptr<ActivationLayer>& layer)
{
activ = layer;
return !activ.empty();
}
class FullyConnected : public ParallelLoopBody
{
public:
FullyConnected() : srcMat(0), weights(0), biasMat(0), activ(0), dstMat(0), nstripes(0), useAVX(false), useAVX2(false) {}
static void run(const Mat& srcMat, const Mat& weights, const Mat& biasMat,
Mat& dstMat, const ActivationLayer* activ, int nstripes)
{
CV_Assert( srcMat.dims == 2 && srcMat.cols == weights.cols &&
dstMat.rows == srcMat.rows && dstMat.cols == weights.rows &&
srcMat.type() == weights.type() && weights.type() == dstMat.type() &&
srcMat.type() == CV_32F &&
(biasMat.empty() || (biasMat.type() == srcMat.type() &&
biasMat.isContinuous() && (int)biasMat.total() == dstMat.cols)) );
FullyConnected p;
p.srcMat = &srcMat;
p.weights = &weights;
p.biasMat = &biasMat;
p.dstMat = &dstMat;
p.nstripes = nstripes;
p.activ = activ;
p.useAVX = checkHardwareSupport(CPU_AVX);
p.useAVX2 = checkHardwareSupport(CPU_AVX2);
parallel_for_(Range(0, nstripes), p, nstripes);
}
void operator()(const Range& r) const
{
int valign = FullyConnectedLayerImpl::VEC_ALIGN;
int nsamples = srcMat->rows;
int nw0 = weights->rows;
int k, vecsize = srcMat->cols;
int vecsize_aligned = (int)alignSize(vecsize, VEC_ALIGN);
size_t total = (size_t)nsamples*nw0;
size_t stripeSize = (total + nstripes - 1)/nstripes;
size_t stripeStart = r.start*stripeSize;
size_t stripeEnd = r.end == nstripes ? total : std::min(r.end*stripeSize, total);
size_t wstep = weights->step1();
AutoBuffer<float> srcbuf(vecsize_aligned + valign);
float* sptr = alignPtr((float*)srcbuf, (int)(valign*sizeof(float)));
for( k = vecsize; k < vecsize_aligned; k++ )
sptr[k] = 0.f;
for( size_t ofs = stripeStart; ofs < stripeEnd; )
{
int sampleIdx = (int)(ofs / nw0);
int delta = (int)(ofs - (size_t)sampleIdx*nw0);
const float* sptr_ = srcMat->ptr<float>(sampleIdx);
const float* wptr = weights->ptr<float>(delta);
float* dptr = dstMat->ptr<float>(sampleIdx) + delta;
const float* biasptr = biasMat->ptr<float>() + delta;
int nw = std::min(nw0 - delta, (int)(stripeEnd - ofs));
memcpy(sptr, sptr_, vecsize*sizeof(sptr[0]));
#if CV_TRY_AVX2
if( useAVX2 )
opt_AVX2::fastGEMM1T( sptr, wptr, wstep, biasptr, dptr, nw, vecsize);
else
#endif
#if CV_TRY_AVX
if( useAVX )
opt_AVX::fastGEMM1T( sptr, wptr, wstep, biasptr, dptr, nw, vecsize);
else
#endif
{
int i = 0;
#if CV_SIMD128
for( ; i <= nw - 4; i += 4, wptr += 4*wstep )
{
v_float32x4 vs0 = v_setall_f32(0.f), vs1 = v_setall_f32(0.f);
v_float32x4 vs2 = v_setall_f32(0.f), vs3 = v_setall_f32(0.f);
for( k = 0; k < vecsize; k += 4 )
{
v_float32x4 v = v_load_aligned(sptr + k);
vs0 += v*v_load_aligned(wptr + k);
vs1 += v*v_load_aligned(wptr + wstep + k);
vs2 += v*v_load_aligned(wptr + wstep*2 + k);
vs3 += v*v_load_aligned(wptr + wstep*3 + k);
}
v_float32x4 s = v_reduce_sum4(vs0, vs1, vs2, vs3);
s += v_load(biasptr + i);
v_store(dptr + i, s);
}
#endif
for( ; i < nw; i++, wptr += wstep )
{
float s0=biasptr[i];
for( k = 0; k < vecsize; k++ )
{
float v = sptr[k];
s0 += v*wptr[k];
}
dptr[i] = s0;
}
}
// TODO: check whether this is correct in the case of ChannelsPReLU.
if(activ)
activ->forwardSlice(dptr, dptr, nw, 0, 0, 1);
ofs += nw;
}
}
const Mat *srcMat, *weights, *biasMat;
const ActivationLayer* activ;
Mat* dstMat;
int nstripes;
bool useAVX;
bool useAVX2;
};
#ifdef HAVE_OPENCL
bool forward_ocl(std::vector<Mat*> &input, std::vector<Mat> &output)
{
int axisCan = clamp(axis, input[0]->dims);
int numOutput = blobs[0].size[0];
int innerSize = blobs[0].size[1];
int outerSize = input[0]->total(0, axisCan);
bool ret = true;
if (innerProductOp.empty())
{
OCL4DNNInnerProductConfig config;
config.num_output = numOutput;
config.bias_term = bias;
config.M = outerSize;
config.K = innerSize;
innerProductOp = Ptr<OCL4DNNInnerProduct<float> >(new OCL4DNNInnerProduct<float>(config));
}
UMat biasOnesMat = UMat::ones(outerSize, 1, umat_blobs[0].type());
for (size_t i = 0; i < input.size(); i++)
{
UMat srcMat, dstMat;
srcMat = input[i]->getUMat(ACCESS_READ);
dstMat = output[i].getUMat(ACCESS_WRITE);
dstMat.setTo(0.0f);
if (!innerProductOp->Forward(srcMat, umat_blobs[0], (bias) ? umat_blobs[1] : UMat(), dstMat))
{
ret = false;
break;
}
if (bias && (outerSize > 1))
{
UMat& biases = umat_blobs[1];
cv::gemm(biasOnesMat, biases, 1, dstMat, 1, dstMat, 0);
}
}
if (ret) return true;
UMat& weights = umat_blobs[0];
for (size_t i = 0; i < input.size(); i++)
{
UMat srcMat, dstMat;
srcMat = input[i]->reshape(1, outerSize).getUMat(ACCESS_READ);
dstMat = output[i].reshape(1, outerSize).getUMat(ACCESS_WRITE);
cv::gemm(srcMat, weights, 1, noArray(), 0, dstMat, GEMM_2_T);
if (bias)
{
UMat& biases = umat_blobs[1];
cv::gemm(biasOnesMat, biases, 1, dstMat, 1, dstMat, 0);
}
}
return true;
}
#endif
void forward(std::vector<Mat*> &input, std::vector<Mat> &output, std::vector<Mat> &)
{
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
CV_OCL_RUN((preferableTarget == DNN_TARGET_OPENCL) &&
OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel()),
forward_ocl(input, output))
int axisCan = clamp(axis, input[0]->dims);
int outerSize = input[0]->total(0, axisCan);
for (size_t i = 0; i < input.size(); i++)
{
Mat srcMat = input[i]->reshape(1, outerSize);
Mat dstMat = output[i].reshape(1, outerSize);
const int nstripes = getNumThreads();
FullyConnected::run(srcMat, weightsMat, biasMat, dstMat, activ.get(), nstripes);
}
}
virtual Ptr<BackendNode> initHalide(const std::vector<Ptr<BackendWrapper> > &inputs)
{
#ifdef HAVE_HALIDE
int inW, inH, inC, inN, outC = blobs[0].size[0];
Halide::Buffer<float> inputBuffer = halideBuffer(inputs[0]);
getCanonicalSize(inputBuffer, &inW, &inH, &inC, &inN);
auto weights = wrapToHalideBuffer(blobs[0], {inW, inH, inC, outC});
Halide::Var x("x"), y("y"), c("c"), n("n");
Halide::Func top = (name.empty() ? Halide::Func() : Halide::Func(name));
Halide::RDom r(0, inW, 0, inH, 0, inC);
Halide::Expr topExpr = sum(inputBuffer(r.x, r.y, r.z, n) *
weights(r.x, r.y, r.z, c));
if (bias)
{
Halide::Buffer<float> bias = wrapToHalideBuffer(blobs[1], {outC});
topExpr += bias(c);
}
top(x, y, c, n) = topExpr;
return Ptr<BackendNode>(new HalideBackendNode(top));
#endif // HAVE_HALIDE
return Ptr<BackendNode>();
}
virtual int64 getFLOPS(const std::vector<MatShape> &inputs,
const std::vector<MatShape> &outputs) const
{
(void)inputs; // suppress unused variable warning
long flops = 0;
int innerSize = blobs[0].size[1];
for(int i = 0; i < outputs.size(); i++)
{
flops += 3*innerSize*total(outputs[i]);
}
return flops;
}
bool bias;
Mat weightsMat, biasMat;
Ptr<ActivationLayer> activ;
};
Ptr<InnerProductLayer> InnerProductLayer::create(const LayerParams& params)
{
return Ptr<InnerProductLayer>(new FullyConnectedLayerImpl(params));
}
}
}