mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
189 lines
5.9 KiB
189 lines
5.9 KiB
#!/usr/bin/env python |
|
|
|
''' |
|
Multitarget planar tracking |
|
================== |
|
|
|
Example of using features2d framework for interactive video homography matching. |
|
ORB features and FLANN matcher are used. This sample provides PlaneTracker class |
|
and an example of its usage. |
|
|
|
video: http://www.youtube.com/watch?v=pzVbhxx6aog |
|
|
|
Usage |
|
----- |
|
plane_tracker.py [<video source>] |
|
|
|
Keys: |
|
SPACE - pause video |
|
c - clear targets |
|
|
|
Select a textured planar object to track by drawing a box with a mouse. |
|
''' |
|
|
|
# Python 2/3 compatibility |
|
from __future__ import print_function |
|
import sys |
|
PY3 = sys.version_info[0] == 3 |
|
|
|
if PY3: |
|
xrange = range |
|
|
|
import numpy as np |
|
import cv2 |
|
|
|
# built-in modules |
|
from collections import namedtuple |
|
|
|
# local modules |
|
import video |
|
import common |
|
from video import presets |
|
|
|
|
|
FLANN_INDEX_KDTREE = 1 |
|
FLANN_INDEX_LSH = 6 |
|
flann_params= dict(algorithm = FLANN_INDEX_LSH, |
|
table_number = 6, # 12 |
|
key_size = 12, # 20 |
|
multi_probe_level = 1) #2 |
|
|
|
MIN_MATCH_COUNT = 10 |
|
|
|
''' |
|
image - image to track |
|
rect - tracked rectangle (x1, y1, x2, y2) |
|
keypoints - keypoints detected inside rect |
|
descrs - their descriptors |
|
data - some user-provided data |
|
''' |
|
PlanarTarget = namedtuple('PlaneTarget', 'image, rect, keypoints, descrs, data') |
|
|
|
''' |
|
target - reference to PlanarTarget |
|
p0 - matched points coords in target image |
|
p1 - matched points coords in input frame |
|
H - homography matrix from p0 to p1 |
|
quad - target boundary quad in input frame |
|
''' |
|
TrackedTarget = namedtuple('TrackedTarget', 'target, p0, p1, H, quad') |
|
|
|
class PlaneTracker: |
|
def __init__(self): |
|
self.detector = cv2.ORB_create( nfeatures = 1000 ) |
|
self.matcher = cv2.FlannBasedMatcher(flann_params, {}) # bug : need to pass empty dict (#1329) |
|
self.targets = [] |
|
self.frame_points = [] |
|
|
|
def add_target(self, image, rect, data=None): |
|
'''Add a new tracking target.''' |
|
x0, y0, x1, y1 = rect |
|
raw_points, raw_descrs = self.detect_features(image) |
|
points, descs = [], [] |
|
for kp, desc in zip(raw_points, raw_descrs): |
|
x, y = kp.pt |
|
if x0 <= x <= x1 and y0 <= y <= y1: |
|
points.append(kp) |
|
descs.append(desc) |
|
descs = np.uint8(descs) |
|
self.matcher.add([descs]) |
|
target = PlanarTarget(image = image, rect=rect, keypoints = points, descrs=descs, data=data) |
|
self.targets.append(target) |
|
|
|
def clear(self): |
|
'''Remove all targets''' |
|
self.targets = [] |
|
self.matcher.clear() |
|
|
|
def track(self, frame): |
|
'''Returns a list of detected TrackedTarget objects''' |
|
self.frame_points, frame_descrs = self.detect_features(frame) |
|
if len(self.frame_points) < MIN_MATCH_COUNT: |
|
return [] |
|
matches = self.matcher.knnMatch(frame_descrs, k = 2) |
|
matches = [m[0] for m in matches if len(m) == 2 and m[0].distance < m[1].distance * 0.75] |
|
if len(matches) < MIN_MATCH_COUNT: |
|
return [] |
|
matches_by_id = [[] for _ in xrange(len(self.targets))] |
|
for m in matches: |
|
matches_by_id[m.imgIdx].append(m) |
|
tracked = [] |
|
for imgIdx, matches in enumerate(matches_by_id): |
|
if len(matches) < MIN_MATCH_COUNT: |
|
continue |
|
target = self.targets[imgIdx] |
|
p0 = [target.keypoints[m.trainIdx].pt for m in matches] |
|
p1 = [self.frame_points[m.queryIdx].pt for m in matches] |
|
p0, p1 = np.float32((p0, p1)) |
|
H, status = cv2.findHomography(p0, p1, cv2.RANSAC, 3.0) |
|
status = status.ravel() != 0 |
|
if status.sum() < MIN_MATCH_COUNT: |
|
continue |
|
p0, p1 = p0[status], p1[status] |
|
|
|
x0, y0, x1, y1 = target.rect |
|
quad = np.float32([[x0, y0], [x1, y0], [x1, y1], [x0, y1]]) |
|
quad = cv2.perspectiveTransform(quad.reshape(1, -1, 2), H).reshape(-1, 2) |
|
|
|
track = TrackedTarget(target=target, p0=p0, p1=p1, H=H, quad=quad) |
|
tracked.append(track) |
|
tracked.sort(key = lambda t: len(t.p0), reverse=True) |
|
return tracked |
|
|
|
def detect_features(self, frame): |
|
'''detect_features(self, frame) -> keypoints, descrs''' |
|
keypoints, descrs = self.detector.detectAndCompute(frame, None) |
|
if descrs is None: # detectAndCompute returns descs=None if not keypoints found |
|
descrs = [] |
|
return keypoints, descrs |
|
|
|
|
|
class App: |
|
def __init__(self, src): |
|
self.cap = video.create_capture(src, presets['book']) |
|
self.frame = None |
|
self.paused = False |
|
self.tracker = PlaneTracker() |
|
|
|
cv2.namedWindow('plane') |
|
self.rect_sel = common.RectSelector('plane', self.on_rect) |
|
|
|
def on_rect(self, rect): |
|
self.tracker.add_target(self.frame, rect) |
|
|
|
def run(self): |
|
while True: |
|
playing = not self.paused and not self.rect_sel.dragging |
|
if playing or self.frame is None: |
|
ret, frame = self.cap.read() |
|
if not ret: |
|
break |
|
self.frame = frame.copy() |
|
|
|
vis = self.frame.copy() |
|
if playing: |
|
tracked = self.tracker.track(self.frame) |
|
for tr in tracked: |
|
cv2.polylines(vis, [np.int32(tr.quad)], True, (255, 255, 255), 2) |
|
for (x, y) in np.int32(tr.p1): |
|
cv2.circle(vis, (x, y), 2, (255, 255, 255)) |
|
|
|
self.rect_sel.draw(vis) |
|
cv2.imshow('plane', vis) |
|
ch = cv2.waitKey(1) |
|
if ch == ord(' '): |
|
self.paused = not self.paused |
|
if ch == ord('c'): |
|
self.tracker.clear() |
|
if ch == 27: |
|
break |
|
|
|
if __name__ == '__main__': |
|
print(__doc__) |
|
|
|
import sys |
|
try: |
|
video_src = sys.argv[1] |
|
except: |
|
video_src = 0 |
|
App(video_src).run()
|
|
|