mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
158 lines
5.1 KiB
158 lines
5.1 KiB
// This file is part of OpenCV project. |
|
// It is subject to the license terms in the LICENSE file found in the top-level directory |
|
// of this distribution and at http://opencv.org/license.html. |
|
// |
|
// Copyright (C) 2017, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
|
|
#include "perf_precomp.hpp" |
|
#include "opencv2/core/ocl.hpp" |
|
|
|
#include "opencv2/dnn/shape_utils.hpp" |
|
|
|
namespace |
|
{ |
|
|
|
#ifdef HAVE_HALIDE |
|
#define TEST_DNN_BACKEND DNN_BACKEND_DEFAULT, DNN_BACKEND_HALIDE |
|
#else |
|
#define TEST_DNN_BACKEND DNN_BACKEND_DEFAULT |
|
#endif |
|
#define TEST_DNN_TARGET DNN_TARGET_CPU, DNN_TARGET_OPENCL |
|
|
|
CV_ENUM(DNNBackend, DNN_BACKEND_DEFAULT, DNN_BACKEND_HALIDE) |
|
CV_ENUM(DNNTarget, DNN_TARGET_CPU, DNN_TARGET_OPENCL) |
|
|
|
class DNNTestNetwork : public ::perf::TestBaseWithParam< tuple<DNNBackend, DNNTarget> > |
|
{ |
|
public: |
|
dnn::Backend backend; |
|
dnn::Target target; |
|
|
|
dnn::Net net; |
|
|
|
void processNet(std::string weights, std::string proto, std::string halide_scheduler, |
|
const Mat& input, const std::string& outputLayer, |
|
const std::string& framework) |
|
{ |
|
backend = (dnn::Backend)(int)get<0>(GetParam()); |
|
target = (dnn::Target)(int)get<1>(GetParam()); |
|
|
|
if (backend == DNN_BACKEND_DEFAULT && target == DNN_TARGET_OPENCL) |
|
{ |
|
#if defined(HAVE_OPENCL) |
|
if (!cv::ocl::useOpenCL()) |
|
#endif |
|
{ |
|
throw ::SkipTestException("OpenCL is not available/disabled in OpenCV"); |
|
} |
|
} |
|
|
|
randu(input, 0.0f, 1.0f); |
|
|
|
weights = findDataFile(weights, false); |
|
if (!proto.empty()) |
|
proto = findDataFile(proto, false); |
|
if (backend == DNN_BACKEND_HALIDE) |
|
{ |
|
if (halide_scheduler == "disabled") |
|
throw ::SkipTestException("Halide test is disabled"); |
|
if (!halide_scheduler.empty()) |
|
halide_scheduler = findDataFile(std::string("dnn/halide_scheduler_") + (target == DNN_TARGET_OPENCL ? "opencl_" : "") + halide_scheduler, true); |
|
} |
|
if (framework == "caffe") |
|
{ |
|
net = cv::dnn::readNetFromCaffe(proto, weights); |
|
} |
|
else if (framework == "torch") |
|
{ |
|
net = cv::dnn::readNetFromTorch(weights); |
|
} |
|
else if (framework == "tensorflow") |
|
{ |
|
net = cv::dnn::readNetFromTensorflow(weights); |
|
} |
|
else |
|
CV_Error(Error::StsNotImplemented, "Unknown framework " + framework); |
|
|
|
net.setInput(blobFromImage(input, 1.0, Size(), Scalar(), false)); |
|
net.setPreferableBackend(backend); |
|
net.setPreferableTarget(target); |
|
if (backend == DNN_BACKEND_HALIDE) |
|
{ |
|
net.setHalideScheduler(halide_scheduler); |
|
} |
|
|
|
MatShape netInputShape = shape(1, 3, input.rows, input.cols); |
|
size_t weightsMemory = 0, blobsMemory = 0; |
|
net.getMemoryConsumption(netInputShape, weightsMemory, blobsMemory); |
|
int64 flops = net.getFLOPS(netInputShape); |
|
CV_Assert(flops > 0); |
|
|
|
net.forward(outputLayer); // warmup |
|
|
|
std::cout << "Memory consumption:" << std::endl; |
|
std::cout << " Weights(parameters): " << divUp(weightsMemory, 1u<<20) << " Mb" << std::endl; |
|
std::cout << " Blobs: " << divUp(blobsMemory, 1u<<20) << " Mb" << std::endl; |
|
std::cout << "Calculation complexity: " << flops * 1e-9 << " GFlops" << std::endl; |
|
|
|
PERF_SAMPLE_BEGIN() |
|
net.forward(); |
|
PERF_SAMPLE_END() |
|
|
|
SANITY_CHECK_NOTHING(); |
|
} |
|
}; |
|
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, AlexNet) |
|
{ |
|
processNet("dnn/bvlc_alexnet.caffemodel", "dnn/bvlc_alexnet.prototxt", |
|
"alexnet.yml", Mat(cv::Size(227, 227), CV_32FC3), "prob", "caffe"); |
|
} |
|
|
|
PERF_TEST_P_(DNNTestNetwork, GoogLeNet) |
|
{ |
|
processNet("dnn/bvlc_googlenet.caffemodel", "dnn/bvlc_googlenet.prototxt", |
|
"", Mat(cv::Size(224, 224), CV_32FC3), "prob", "caffe"); |
|
} |
|
|
|
PERF_TEST_P_(DNNTestNetwork, ResNet50) |
|
{ |
|
processNet("dnn/ResNet-50-model.caffemodel", "dnn/ResNet-50-deploy.prototxt", |
|
"resnet_50.yml", Mat(cv::Size(224, 224), CV_32FC3), "prob", "caffe"); |
|
} |
|
|
|
PERF_TEST_P_(DNNTestNetwork, SqueezeNet_v1_1) |
|
{ |
|
processNet("dnn/squeezenet_v1.1.caffemodel", "dnn/squeezenet_v1.1.prototxt", |
|
"squeezenet_v1_1.yml", Mat(cv::Size(227, 227), CV_32FC3), "prob", "caffe"); |
|
} |
|
|
|
PERF_TEST_P_(DNNTestNetwork, Inception_5h) |
|
{ |
|
processNet("dnn/tensorflow_inception_graph.pb", "", |
|
"inception_5h.yml", |
|
Mat(cv::Size(224, 224), CV_32FC3), "softmax2", "tensorflow"); |
|
} |
|
|
|
PERF_TEST_P_(DNNTestNetwork, ENet) |
|
{ |
|
processNet("dnn/Enet-model-best.net", "", "enet.yml", |
|
Mat(cv::Size(512, 256), CV_32FC3), "l367_Deconvolution", "torch"); |
|
} |
|
|
|
PERF_TEST_P_(DNNTestNetwork, SSD) |
|
{ |
|
processNet("dnn/VGG_ILSVRC2016_SSD_300x300_iter_440000.caffemodel", "dnn/ssd_vgg16.prototxt", "disabled", |
|
Mat(cv::Size(300, 300), CV_32FC3), "detection_out", "caffe"); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(/*nothing*/, DNNTestNetwork, |
|
testing::Combine( |
|
::testing::Values(TEST_DNN_BACKEND), |
|
DNNTarget::all() |
|
) |
|
); |
|
|
|
} // namespace
|
|
|