mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
535 lines
18 KiB
535 lines
18 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "test_precomp.hpp" |
|
#include <time.h> |
|
|
|
using namespace cv; |
|
using namespace std; |
|
|
|
#define sign(a) a > 0 ? 1 : a == 0 ? 0 : -1 |
|
|
|
#define CORE_EIGEN_ERROR_COUNT 1 |
|
#define CORE_EIGEN_ERROR_SIZE 2 |
|
#define CORE_EIGEN_ERROR_DIFF 3 |
|
#define CORE_EIGEN_ERROR_ORTHO 4 |
|
#define CORE_EIGEN_ERROR_ORDER 5 |
|
|
|
#define MESSAGE_ERROR_COUNT "Matrix of eigen values must have the same rows as source matrix and 1 column." |
|
#define MESSAGE_ERROR_SIZE "Source matrix and matrix of eigen vectors must have the same sizes." |
|
#define MESSAGE_ERROR_DIFF_1 "Accuracy of eigen values computing less than required." |
|
#define MESSAGE_ERROR_DIFF_2 "Accuracy of eigen vectors computing less than required." |
|
#define MESSAGE_ERROR_ORTHO "Matrix of eigen vectors is not orthogonal." |
|
#define MESSAGE_ERROR_ORDER "Eigen values are not sorted in ascending order." |
|
|
|
const int COUNT_NORM_TYPES = 3; |
|
const int NORM_TYPE[COUNT_NORM_TYPES] = {cv::NORM_L1, cv::NORM_L2, cv::NORM_INF}; |
|
|
|
enum TASK_TYPE_EIGEN {VALUES, VECTORS}; |
|
|
|
class Core_EigenTest: public cvtest::BaseTest |
|
{ |
|
public: |
|
|
|
Core_EigenTest(); |
|
~Core_EigenTest(); |
|
|
|
protected: |
|
|
|
bool test_values(const cv::Mat& src); // complex test for eigen without vectors |
|
bool check_full(int type); // compex test for symmetric matrix |
|
virtual void run (int) = 0; // main testing method |
|
|
|
protected: |
|
|
|
float eps_val_32, eps_vec_32; |
|
float eps_val_64, eps_vec_64; |
|
int ntests; |
|
|
|
bool check_pair_count(const cv::Mat& src, const cv::Mat& evalues, int low_index = -1, int high_index = -1); |
|
bool check_pair_count(const cv::Mat& src, const cv::Mat& evalues, const cv::Mat& evectors, int low_index = -1, int high_index = -1); |
|
bool check_pairs_order(const cv::Mat& eigen_values); // checking order of eigen values & vectors (it should be none up) |
|
bool check_orthogonality(const cv::Mat& U); // checking is matrix of eigen vectors orthogonal |
|
bool test_pairs(const cv::Mat& src); // complex test for eigen with vectors |
|
|
|
void print_information(const size_t norm_idx, const cv::Mat& src, double diff, double max_diff); |
|
}; |
|
|
|
class Core_EigenTest_Scalar : public Core_EigenTest |
|
{ |
|
public: |
|
Core_EigenTest_Scalar() : Core_EigenTest() {} |
|
~Core_EigenTest_Scalar(); |
|
|
|
virtual void run(int) = 0; |
|
}; |
|
|
|
class Core_EigenTest_Scalar_32 : public Core_EigenTest_Scalar |
|
{ |
|
public: |
|
Core_EigenTest_Scalar_32() : Core_EigenTest_Scalar() {} |
|
~Core_EigenTest_Scalar_32(); |
|
|
|
void run(int); |
|
}; |
|
|
|
class Core_EigenTest_Scalar_64 : public Core_EigenTest_Scalar |
|
{ |
|
public: |
|
Core_EigenTest_Scalar_64() : Core_EigenTest_Scalar() {} |
|
~Core_EigenTest_Scalar_64(); |
|
void run(int); |
|
}; |
|
|
|
class Core_EigenTest_32 : public Core_EigenTest |
|
{ |
|
public: |
|
Core_EigenTest_32(): Core_EigenTest() {} |
|
~Core_EigenTest_32() {} |
|
void run(int); |
|
}; |
|
|
|
class Core_EigenTest_64 : public Core_EigenTest |
|
{ |
|
public: |
|
Core_EigenTest_64(): Core_EigenTest() {} |
|
~Core_EigenTest_64() {} |
|
void run(int); |
|
}; |
|
|
|
Core_EigenTest_Scalar::~Core_EigenTest_Scalar() {} |
|
Core_EigenTest_Scalar_32::~Core_EigenTest_Scalar_32() {} |
|
Core_EigenTest_Scalar_64::~Core_EigenTest_Scalar_64() {} |
|
|
|
void Core_EigenTest_Scalar_32::run(int) |
|
{ |
|
for (int i = 0; i < ntests; ++i) |
|
{ |
|
float value = cv::randu<float>(); |
|
cv::Mat src(1, 1, CV_32FC1, Scalar::all((float)value)); |
|
test_values(src); |
|
} |
|
} |
|
|
|
void Core_EigenTest_Scalar_64::run(int) |
|
{ |
|
for (int i = 0; i < ntests; ++i) |
|
{ |
|
float value = cv::randu<float>(); |
|
cv::Mat src(1, 1, CV_64FC1, Scalar::all((double)value)); |
|
test_values(src); |
|
} |
|
} |
|
|
|
void Core_EigenTest_32::run(int) { check_full(CV_32FC1); } |
|
void Core_EigenTest_64::run(int) { check_full(CV_64FC1); } |
|
|
|
Core_EigenTest::Core_EigenTest() |
|
: eps_val_32(1e-3f), eps_vec_32(12e-3f), |
|
eps_val_64(1e-4f), eps_vec_64(1e-3f), ntests(100) {} |
|
Core_EigenTest::~Core_EigenTest() {} |
|
|
|
bool Core_EigenTest::check_pair_count(const cv::Mat& src, const cv::Mat& evalues, int low_index, int high_index) |
|
{ |
|
int n = src.rows, s = sign(high_index); |
|
if (!( (evalues.rows == n - max<int>(0, low_index) - ((int)((n/2.0)*(s*s-s)) + (1+s-s*s)*(n - (high_index+1)))) && (evalues.cols == 1))) |
|
{ |
|
std::cout << endl; std::cout << "Checking sizes of eigen values matrix " << evalues << "..." << endl; |
|
std::cout << "Number of rows: " << evalues.rows << " Number of cols: " << evalues.cols << endl; |
|
std::cout << "Size of src symmetric matrix: " << src.rows << " * " << src.cols << endl; std::cout << endl; |
|
CV_Error(CORE_EIGEN_ERROR_COUNT, MESSAGE_ERROR_COUNT); |
|
return false; |
|
} |
|
return true; |
|
} |
|
|
|
bool Core_EigenTest::check_pair_count(const cv::Mat& src, const cv::Mat& evalues, const cv::Mat& evectors, int low_index, int high_index) |
|
{ |
|
int n = src.rows, s = sign(high_index); |
|
int right_eigen_pair_count = n - max<int>(0, low_index) - ((int)((n/2.0)*(s*s-s)) + (1+s-s*s)*(n - (high_index+1))); |
|
|
|
if (!(evectors.rows == right_eigen_pair_count && evectors.cols == right_eigen_pair_count)) |
|
{ |
|
std::cout << endl; std::cout << "Checking sizes of eigen vectors matrix " << evectors << "..." << endl; |
|
std::cout << "Number of rows: " << evectors.rows << " Number of cols: " << evectors.cols << endl; |
|
std:: cout << "Size of src symmetric matrix: " << src.rows << " * " << src.cols << endl; std::cout << endl; |
|
CV_Error (CORE_EIGEN_ERROR_SIZE, MESSAGE_ERROR_SIZE); |
|
return false; |
|
} |
|
|
|
if (!(evalues.rows == right_eigen_pair_count && evalues.cols == 1)) |
|
{ |
|
std::cout << endl; std::cout << "Checking sizes of eigen values matrix " << evalues << "..." << endl; |
|
std::cout << "Number of rows: " << evalues.rows << " Number of cols: " << evalues.cols << endl; |
|
std:: cout << "Size of src symmetric matrix: " << src.rows << " * " << src.cols << endl; std::cout << endl; |
|
CV_Error (CORE_EIGEN_ERROR_COUNT, MESSAGE_ERROR_COUNT); |
|
return false; |
|
} |
|
|
|
return true; |
|
} |
|
|
|
void Core_EigenTest::print_information(const size_t norm_idx, const cv::Mat& src, double diff, double max_diff) |
|
{ |
|
switch (NORM_TYPE[norm_idx]) |
|
{ |
|
case cv::NORM_L1: std::cout << "L1"; break; |
|
case cv::NORM_L2: std::cout << "L2"; break; |
|
case cv::NORM_INF: std::cout << "INF"; break; |
|
default: break; |
|
} |
|
|
|
cout << "-criteria... " << endl; |
|
cout << "Source size: " << src.rows << " * " << src.cols << endl; |
|
cout << "Difference between original eigen vectors matrix and result: " << diff << endl; |
|
cout << "Maximum allowed difference: " << max_diff << endl; cout << endl; |
|
} |
|
|
|
bool Core_EigenTest::check_orthogonality(const cv::Mat& U) |
|
{ |
|
int type = U.type(); |
|
double eps_vec = type == CV_32FC1 ? eps_vec_32 : eps_vec_64; |
|
cv::Mat UUt; cv::mulTransposed(U, UUt, false); |
|
|
|
cv::Mat E = Mat::eye(U.rows, U.cols, type); |
|
|
|
for (int i = 0; i < COUNT_NORM_TYPES; ++i) |
|
{ |
|
double diff = cvtest::norm(UUt, E, NORM_TYPE[i]); |
|
if (diff > eps_vec) |
|
{ |
|
std::cout << endl; std::cout << "Checking orthogonality of matrix " << U << ": "; |
|
print_information(i, U, diff, eps_vec); |
|
CV_Error(CORE_EIGEN_ERROR_ORTHO, MESSAGE_ERROR_ORTHO); |
|
return false; |
|
} |
|
} |
|
|
|
return true; |
|
} |
|
|
|
bool Core_EigenTest::check_pairs_order(const cv::Mat& eigen_values) |
|
{ |
|
switch (eigen_values.type()) |
|
{ |
|
case CV_32FC1: |
|
{ |
|
for (int i = 0; i < (int)(eigen_values.total() - 1); ++i) |
|
if (!(eigen_values.at<float>(i, 0) > eigen_values.at<float>(i+1, 0))) |
|
{ |
|
std::cout << endl; std::cout << "Checking order of eigen values vector " << eigen_values << "..." << endl; |
|
std::cout << "Pair of indexes with non ascending of eigen values: (" << i << ", " << i+1 << ")." << endl; |
|
std::cout << endl; |
|
CV_Error(CORE_EIGEN_ERROR_ORDER, MESSAGE_ERROR_ORDER); |
|
return false; |
|
} |
|
|
|
break; |
|
} |
|
|
|
case CV_64FC1: |
|
{ |
|
for (int i = 0; i < (int)(eigen_values.total() - 1); ++i) |
|
if (!(eigen_values.at<double>(i, 0) > eigen_values.at<double>(i+1, 0))) |
|
{ |
|
std::cout << endl; std::cout << "Checking order of eigen values vector " << eigen_values << "..." << endl; |
|
std::cout << "Pair of indexes with non ascending of eigen values: (" << i << ", " << i+1 << ")." << endl; |
|
std::cout << endl; |
|
CV_Error(CORE_EIGEN_ERROR_ORDER, "Eigen values are not sorted in ascending order."); |
|
return false; |
|
} |
|
|
|
break; |
|
} |
|
|
|
default:; |
|
} |
|
|
|
return true; |
|
} |
|
|
|
bool Core_EigenTest::test_pairs(const cv::Mat& src) |
|
{ |
|
int type = src.type(); |
|
double eps_vec = type == CV_32FC1 ? eps_vec_32 : eps_vec_64; |
|
|
|
cv::Mat eigen_values, eigen_vectors; |
|
|
|
cv::eigen(src, eigen_values, eigen_vectors); |
|
|
|
if (!check_pair_count(src, eigen_values, eigen_vectors)) |
|
return false; |
|
|
|
if (!check_orthogonality (eigen_vectors)) |
|
return false; |
|
|
|
if (!check_pairs_order(eigen_values)) |
|
return false; |
|
|
|
cv::Mat eigen_vectors_t; cv::transpose(eigen_vectors, eigen_vectors_t); |
|
|
|
cv::Mat src_evec(src.rows, src.cols, type); |
|
src_evec = src*eigen_vectors_t; |
|
|
|
cv::Mat eval_evec(src.rows, src.cols, type); |
|
|
|
switch (type) |
|
{ |
|
case CV_32FC1: |
|
{ |
|
for (int i = 0; i < src.cols; ++i) |
|
{ |
|
cv::Mat tmp = eigen_values.at<float>(i, 0) * eigen_vectors_t.col(i); |
|
for (int j = 0; j < src.rows; ++j) eval_evec.at<float>(j, i) = tmp.at<float>(j, 0); |
|
} |
|
|
|
break; |
|
} |
|
|
|
case CV_64FC1: |
|
{ |
|
for (int i = 0; i < src.cols; ++i) |
|
{ |
|
cv::Mat tmp = eigen_values.at<double>(i, 0) * eigen_vectors_t.col(i); |
|
for (int j = 0; j < src.rows; ++j) eval_evec.at<double>(j, i) = tmp.at<double>(j, 0); |
|
} |
|
|
|
break; |
|
} |
|
|
|
default:; |
|
} |
|
|
|
cv::Mat disparity = src_evec - eval_evec; |
|
|
|
for (int i = 0; i < COUNT_NORM_TYPES; ++i) |
|
{ |
|
double diff = cvtest::norm(disparity, NORM_TYPE[i]); |
|
if (diff > eps_vec) |
|
{ |
|
std::cout << endl; std::cout << "Checking accuracy of eigen vectors computing for matrix " << src << ": "; |
|
print_information(i, src, diff, eps_vec); |
|
CV_Error(CORE_EIGEN_ERROR_DIFF, MESSAGE_ERROR_DIFF_2); |
|
return false; |
|
} |
|
} |
|
|
|
return true; |
|
} |
|
|
|
bool Core_EigenTest::test_values(const cv::Mat& src) |
|
{ |
|
int type = src.type(); |
|
double eps_val = type == CV_32FC1 ? eps_val_32 : eps_val_64; |
|
|
|
cv::Mat eigen_values_1, eigen_values_2, eigen_vectors; |
|
|
|
if (!test_pairs(src)) return false; |
|
|
|
cv::eigen(src, eigen_values_1, eigen_vectors); |
|
cv::eigen(src, eigen_values_2); |
|
|
|
if (!check_pair_count(src, eigen_values_2)) return false; |
|
|
|
for (int i = 0; i < COUNT_NORM_TYPES; ++i) |
|
{ |
|
double diff = cvtest::norm(eigen_values_1, eigen_values_2, NORM_TYPE[i]); |
|
if (diff > eps_val) |
|
{ |
|
std::cout << endl; std::cout << "Checking accuracy of eigen values computing for matrix " << src << ": "; |
|
print_information(i, src, diff, eps_val); |
|
CV_Error(CORE_EIGEN_ERROR_DIFF, MESSAGE_ERROR_DIFF_1); |
|
return false; |
|
} |
|
} |
|
|
|
return true; |
|
} |
|
|
|
bool Core_EigenTest::check_full(int type) |
|
{ |
|
const int MAX_DEGREE = 7; |
|
|
|
RNG rng = ::theRNG(); // fix the seed |
|
|
|
for (int i = 0; i < ntests; ++i) |
|
{ |
|
int src_size = (int)(std::pow(2.0, (rng.uniform(0, MAX_DEGREE) + 1.))); |
|
|
|
cv::Mat src(src_size, src_size, type); |
|
|
|
for (int j = 0; j < src.rows; ++j) |
|
for (int k = j; k < src.cols; ++k) |
|
if (type == CV_32FC1) src.at<float>(k, j) = src.at<float>(j, k) = cv::randu<float>(); |
|
else src.at<double>(k, j) = src.at<double>(j, k) = cv::randu<double>(); |
|
|
|
if (!test_values(src)) return false; |
|
} |
|
|
|
return true; |
|
} |
|
|
|
TEST(Core_Eigen, scalar_32) {Core_EigenTest_Scalar_32 test; test.safe_run(); } |
|
TEST(Core_Eigen, scalar_64) {Core_EigenTest_Scalar_64 test; test.safe_run(); } |
|
TEST(Core_Eigen, vector_32) { Core_EigenTest_32 test; test.safe_run(); } |
|
TEST(Core_Eigen, vector_64) { Core_EigenTest_64 test; test.safe_run(); } |
|
|
|
template<typename T> |
|
static void testEigen(const Mat_<T>& src, const Mat_<T>& expected_eigenvalues, bool runSymmetric = false) |
|
{ |
|
SCOPED_TRACE(runSymmetric ? "cv::eigen" : "cv::eigenNonSymmetric"); |
|
|
|
int type = traits::Type<T>::value; |
|
const T eps = 1e-6f; |
|
|
|
Mat eigenvalues, eigenvectors, eigenvalues0; |
|
|
|
if (runSymmetric) |
|
{ |
|
cv::eigen(src, eigenvalues0, noArray()); |
|
cv::eigen(src, eigenvalues, eigenvectors); |
|
} |
|
else |
|
{ |
|
cv::eigenNonSymmetric(src, eigenvalues0, noArray()); |
|
cv::eigenNonSymmetric(src, eigenvalues, eigenvectors); |
|
} |
|
#if 0 |
|
std::cout << "src = " << src << std::endl; |
|
std::cout << "eigenvalues.t() = " << eigenvalues.t() << std::endl; |
|
std::cout << "eigenvectors = " << eigenvectors << std::endl; |
|
#endif |
|
ASSERT_EQ(type, eigenvalues0.type()); |
|
ASSERT_EQ(type, eigenvalues.type()); |
|
ASSERT_EQ(type, eigenvectors.type()); |
|
|
|
ASSERT_EQ(src.rows, eigenvalues.rows); |
|
ASSERT_EQ(eigenvalues.rows, eigenvectors.rows); |
|
ASSERT_EQ(src.rows, eigenvectors.cols); |
|
|
|
EXPECT_LT(cvtest::norm(eigenvalues, eigenvalues0, NORM_INF), eps); |
|
|
|
// check definition: src*eigenvectors.row(i).t() = eigenvalues.at<srcType>(i)*eigenvectors.row(i).t() |
|
for (int i = 0; i < src.rows; i++) |
|
{ |
|
EXPECT_NEAR(eigenvalues.at<T>(i), expected_eigenvalues(i), eps) << "i=" << i; |
|
Mat lhs = src*eigenvectors.row(i).t(); |
|
Mat rhs = eigenvalues.at<T>(i)*eigenvectors.row(i).t(); |
|
EXPECT_LT(cvtest::norm(lhs, rhs, NORM_INF), eps) |
|
<< "i=" << i << " eigenvalue=" << eigenvalues.at<T>(i) << std::endl |
|
<< "lhs=" << lhs.t() << std::endl |
|
<< "rhs=" << rhs.t(); |
|
} |
|
} |
|
|
|
template<typename T> |
|
static void testEigenSymmetric3x3() |
|
{ |
|
/*const*/ T values_[] = { |
|
2, -1, 0, |
|
-1, 2, -1, |
|
0, -1, 2 |
|
}; |
|
Mat_<T> src(3, 3, values_); |
|
|
|
/*const*/ T expected_eigenvalues_[] = { 3.414213562373095f, 2, 0.585786437626905f }; |
|
Mat_<T> expected_eigenvalues(3, 1, expected_eigenvalues_); |
|
|
|
testEigen(src, expected_eigenvalues); |
|
testEigen(src, expected_eigenvalues, true); |
|
} |
|
TEST(Core_EigenSymmetric, float3x3) { testEigenSymmetric3x3<float>(); } |
|
TEST(Core_EigenSymmetric, double3x3) { testEigenSymmetric3x3<double>(); } |
|
|
|
template<typename T> |
|
static void testEigenSymmetric5x5() |
|
{ |
|
/*const*/ T values_[5*5] = { |
|
5, -1, 0, 2, 1, |
|
-1, 4, -1, 0, 0, |
|
0, -1, 3, 1, -1, |
|
2, 0, 1, 4, 0, |
|
1, 0, -1, 0, 1 |
|
}; |
|
Mat_<T> src(5, 5, values_); |
|
|
|
/*const*/ T expected_eigenvalues_[] = { 7.028919644935684f, 4.406130784616501f, 3.73626552682258f, 1.438067799899037f, 0.390616243726198f }; |
|
Mat_<T> expected_eigenvalues(5, 1, expected_eigenvalues_); |
|
|
|
testEigen(src, expected_eigenvalues); |
|
testEigen(src, expected_eigenvalues, true); |
|
} |
|
TEST(Core_EigenSymmetric, float5x5) { testEigenSymmetric5x5<float>(); } |
|
TEST(Core_EigenSymmetric, double5x5) { testEigenSymmetric5x5<double>(); } |
|
|
|
|
|
template<typename T> |
|
static void testEigen2x2() |
|
{ |
|
/*const*/ T values_[] = { 4, 1, 6, 3 }; |
|
Mat_<T> src(2, 2, values_); |
|
|
|
/*const*/ T expected_eigenvalues_[] = { 6, 1 }; |
|
Mat_<T> expected_eigenvalues(2, 1, expected_eigenvalues_); |
|
|
|
testEigen(src, expected_eigenvalues); |
|
} |
|
TEST(Core_EigenNonSymmetric, float2x2) { testEigen2x2<float>(); } |
|
TEST(Core_EigenNonSymmetric, double2x2) { testEigen2x2<double>(); } |
|
|
|
template<typename T> |
|
static void testEigen3x3() |
|
{ |
|
/*const*/ T values_[3*3] = { |
|
3,1,0, |
|
0,3,1, |
|
0,0,3 |
|
}; |
|
Mat_<T> src(3, 3, values_); |
|
|
|
/*const*/ T expected_eigenvalues_[] = { 3, 3, 3 }; |
|
Mat_<T> expected_eigenvalues(3, 1, expected_eigenvalues_); |
|
|
|
testEigen(src, expected_eigenvalues); |
|
} |
|
TEST(Core_EigenNonSymmetric, float3x3) { testEigen3x3<float>(); } |
|
TEST(Core_EigenNonSymmetric, double3x3) { testEigen3x3<double>(); }
|
|
|