mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
140 lines
4.0 KiB
140 lines
4.0 KiB
// Copyright 2011 Google Inc. All Rights Reserved. |
|
// |
|
// Use of this source code is governed by a BSD-style license |
|
// that can be found in the COPYING file in the root of the source |
|
// tree. An additional intellectual property rights grant can be found |
|
// in the file PATENTS. All contributing project authors may |
|
// be found in the AUTHORS file in the root of the source tree. |
|
// ----------------------------------------------------------------------------- |
|
// |
|
// Quantize levels for specified number of quantization-levels ([2, 256]). |
|
// Min and max values are preserved (usual 0 and 255 for alpha plane). |
|
// |
|
// Author: Skal (pascal.massimino@gmail.com) |
|
|
|
#include <assert.h> |
|
|
|
#include "./quant_levels_utils.h" |
|
|
|
#define NUM_SYMBOLS 256 |
|
|
|
#define MAX_ITER 6 // Maximum number of convergence steps. |
|
#define ERROR_THRESHOLD 1e-4 // MSE stopping criterion. |
|
|
|
// ----------------------------------------------------------------------------- |
|
// Quantize levels. |
|
|
|
int QuantizeLevels(uint8_t* const data, int width, int height, |
|
int num_levels, uint64_t* const sse) { |
|
int freq[NUM_SYMBOLS] = { 0 }; |
|
int q_level[NUM_SYMBOLS] = { 0 }; |
|
double inv_q_level[NUM_SYMBOLS] = { 0 }; |
|
int min_s = 255, max_s = 0; |
|
const size_t data_size = height * width; |
|
int i, num_levels_in, iter; |
|
double last_err = 1.e38, err = 0.; |
|
const double err_threshold = ERROR_THRESHOLD * data_size; |
|
|
|
if (data == NULL) { |
|
return 0; |
|
} |
|
|
|
if (width <= 0 || height <= 0) { |
|
return 0; |
|
} |
|
|
|
if (num_levels < 2 || num_levels > 256) { |
|
return 0; |
|
} |
|
|
|
{ |
|
size_t n; |
|
num_levels_in = 0; |
|
for (n = 0; n < data_size; ++n) { |
|
num_levels_in += (freq[data[n]] == 0); |
|
if (min_s > data[n]) min_s = data[n]; |
|
if (max_s < data[n]) max_s = data[n]; |
|
++freq[data[n]]; |
|
} |
|
} |
|
|
|
if (num_levels_in <= num_levels) goto End; // nothing to do! |
|
|
|
// Start with uniformly spread centroids. |
|
for (i = 0; i < num_levels; ++i) { |
|
inv_q_level[i] = min_s + (double)(max_s - min_s) * i / (num_levels - 1); |
|
} |
|
|
|
// Fixed values. Won't be changed. |
|
q_level[min_s] = 0; |
|
q_level[max_s] = num_levels - 1; |
|
assert(inv_q_level[0] == min_s); |
|
assert(inv_q_level[num_levels - 1] == max_s); |
|
|
|
// k-Means iterations. |
|
for (iter = 0; iter < MAX_ITER; ++iter) { |
|
double q_sum[NUM_SYMBOLS] = { 0 }; |
|
double q_count[NUM_SYMBOLS] = { 0 }; |
|
int s, slot = 0; |
|
|
|
// Assign classes to representatives. |
|
for (s = min_s; s <= max_s; ++s) { |
|
// Keep track of the nearest neighbour 'slot' |
|
while (slot < num_levels - 1 && |
|
2 * s > inv_q_level[slot] + inv_q_level[slot + 1]) { |
|
++slot; |
|
} |
|
if (freq[s] > 0) { |
|
q_sum[slot] += s * freq[s]; |
|
q_count[slot] += freq[s]; |
|
} |
|
q_level[s] = slot; |
|
} |
|
|
|
// Assign new representatives to classes. |
|
if (num_levels > 2) { |
|
for (slot = 1; slot < num_levels - 1; ++slot) { |
|
const double count = q_count[slot]; |
|
if (count > 0.) { |
|
inv_q_level[slot] = q_sum[slot] / count; |
|
} |
|
} |
|
} |
|
|
|
// Compute convergence error. |
|
err = 0.; |
|
for (s = min_s; s <= max_s; ++s) { |
|
const double error = s - inv_q_level[q_level[s]]; |
|
err += freq[s] * error * error; |
|
} |
|
|
|
// Check for convergence: we stop as soon as the error is no |
|
// longer improving. |
|
if (last_err - err < err_threshold) break; |
|
last_err = err; |
|
} |
|
|
|
// Remap the alpha plane to quantized values. |
|
{ |
|
// double->int rounding operation can be costly, so we do it |
|
// once for all before remapping. We also perform the data[] -> slot |
|
// mapping, while at it (avoid one indirection in the final loop). |
|
uint8_t map[NUM_SYMBOLS]; |
|
int s; |
|
size_t n; |
|
for (s = min_s; s <= max_s; ++s) { |
|
const int slot = q_level[s]; |
|
map[s] = (uint8_t)(inv_q_level[slot] + .5); |
|
} |
|
// Final pass. |
|
for (n = 0; n < data_size; ++n) { |
|
data[n] = map[data[n]]; |
|
} |
|
} |
|
End: |
|
// Store sum of squared error if needed. |
|
if (sse != NULL) *sse = (uint64_t)err; |
|
|
|
return 1; |
|
} |
|
|
|
|