mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
750 lines
30 KiB
750 lines
30 KiB
// Copyright 2016 Google Inc. All Rights Reserved. |
|
// |
|
// Use of this source code is governed by a BSD-style license |
|
// that can be found in the COPYING file in the root of the source |
|
// tree. An additional intellectual property rights grant can be found |
|
// in the file PATENTS. All contributing project authors may |
|
// be found in the AUTHORS file in the root of the source tree. |
|
// ----------------------------------------------------------------------------- |
|
// |
|
// Image transform methods for lossless encoder. |
|
// |
|
// Authors: Vikas Arora (vikaas.arora@gmail.com) |
|
// Jyrki Alakuijala (jyrki@google.com) |
|
// Urvang Joshi (urvang@google.com) |
|
// Vincent Rabaud (vrabaud@google.com) |
|
|
|
#include "../dsp/lossless.h" |
|
#include "../dsp/lossless_common.h" |
|
#include "./vp8li_enc.h" |
|
|
|
#define MAX_DIFF_COST (1e30f) |
|
|
|
static const float kSpatialPredictorBias = 15.f; |
|
static const int kPredLowEffort = 11; |
|
static const uint32_t kMaskAlpha = 0xff000000; |
|
|
|
// Mostly used to reduce code size + readability |
|
static WEBP_INLINE int GetMin(int a, int b) { return (a > b) ? b : a; } |
|
static WEBP_INLINE int GetMax(int a, int b) { return (a < b) ? b : a; } |
|
|
|
//------------------------------------------------------------------------------ |
|
// Methods to calculate Entropy (Shannon). |
|
|
|
static float PredictionCostSpatial(const int counts[256], int weight_0, |
|
double exp_val) { |
|
const int significant_symbols = 256 >> 4; |
|
const double exp_decay_factor = 0.6; |
|
double bits = weight_0 * counts[0]; |
|
int i; |
|
for (i = 1; i < significant_symbols; ++i) { |
|
bits += exp_val * (counts[i] + counts[256 - i]); |
|
exp_val *= exp_decay_factor; |
|
} |
|
return (float)(-0.1 * bits); |
|
} |
|
|
|
static float PredictionCostSpatialHistogram(const int accumulated[4][256], |
|
const int tile[4][256]) { |
|
int i; |
|
double retval = 0; |
|
for (i = 0; i < 4; ++i) { |
|
const double kExpValue = 0.94; |
|
retval += PredictionCostSpatial(tile[i], 1, kExpValue); |
|
retval += VP8LCombinedShannonEntropy(tile[i], accumulated[i]); |
|
} |
|
return (float)retval; |
|
} |
|
|
|
static WEBP_INLINE void UpdateHisto(int histo_argb[4][256], uint32_t argb) { |
|
++histo_argb[0][argb >> 24]; |
|
++histo_argb[1][(argb >> 16) & 0xff]; |
|
++histo_argb[2][(argb >> 8) & 0xff]; |
|
++histo_argb[3][argb & 0xff]; |
|
} |
|
|
|
//------------------------------------------------------------------------------ |
|
// Spatial transform functions. |
|
|
|
static WEBP_INLINE void PredictBatch(int mode, int x_start, int y, |
|
int num_pixels, const uint32_t* current, |
|
const uint32_t* upper, uint32_t* out) { |
|
if (x_start == 0) { |
|
if (y == 0) { |
|
// ARGB_BLACK. |
|
VP8LPredictorsSub[0](current, NULL, 1, out); |
|
} else { |
|
// Top one. |
|
VP8LPredictorsSub[2](current, upper, 1, out); |
|
} |
|
++x_start; |
|
++out; |
|
--num_pixels; |
|
} |
|
if (y == 0) { |
|
// Left one. |
|
VP8LPredictorsSub[1](current + x_start, NULL, num_pixels, out); |
|
} else { |
|
VP8LPredictorsSub[mode](current + x_start, upper + x_start, num_pixels, |
|
out); |
|
} |
|
} |
|
|
|
static int MaxDiffBetweenPixels(uint32_t p1, uint32_t p2) { |
|
const int diff_a = abs((int)(p1 >> 24) - (int)(p2 >> 24)); |
|
const int diff_r = abs((int)((p1 >> 16) & 0xff) - (int)((p2 >> 16) & 0xff)); |
|
const int diff_g = abs((int)((p1 >> 8) & 0xff) - (int)((p2 >> 8) & 0xff)); |
|
const int diff_b = abs((int)(p1 & 0xff) - (int)(p2 & 0xff)); |
|
return GetMax(GetMax(diff_a, diff_r), GetMax(diff_g, diff_b)); |
|
} |
|
|
|
static int MaxDiffAroundPixel(uint32_t current, uint32_t up, uint32_t down, |
|
uint32_t left, uint32_t right) { |
|
const int diff_up = MaxDiffBetweenPixels(current, up); |
|
const int diff_down = MaxDiffBetweenPixels(current, down); |
|
const int diff_left = MaxDiffBetweenPixels(current, left); |
|
const int diff_right = MaxDiffBetweenPixels(current, right); |
|
return GetMax(GetMax(diff_up, diff_down), GetMax(diff_left, diff_right)); |
|
} |
|
|
|
static uint32_t AddGreenToBlueAndRed(uint32_t argb) { |
|
const uint32_t green = (argb >> 8) & 0xff; |
|
uint32_t red_blue = argb & 0x00ff00ffu; |
|
red_blue += (green << 16) | green; |
|
red_blue &= 0x00ff00ffu; |
|
return (argb & 0xff00ff00u) | red_blue; |
|
} |
|
|
|
static void MaxDiffsForRow(int width, int stride, const uint32_t* const argb, |
|
uint8_t* const max_diffs, int used_subtract_green) { |
|
uint32_t current, up, down, left, right; |
|
int x; |
|
if (width <= 2) return; |
|
current = argb[0]; |
|
right = argb[1]; |
|
if (used_subtract_green) { |
|
current = AddGreenToBlueAndRed(current); |
|
right = AddGreenToBlueAndRed(right); |
|
} |
|
// max_diffs[0] and max_diffs[width - 1] are never used. |
|
for (x = 1; x < width - 1; ++x) { |
|
up = argb[-stride + x]; |
|
down = argb[stride + x]; |
|
left = current; |
|
current = right; |
|
right = argb[x + 1]; |
|
if (used_subtract_green) { |
|
up = AddGreenToBlueAndRed(up); |
|
down = AddGreenToBlueAndRed(down); |
|
right = AddGreenToBlueAndRed(right); |
|
} |
|
max_diffs[x] = MaxDiffAroundPixel(current, up, down, left, right); |
|
} |
|
} |
|
|
|
// Quantize the difference between the actual component value and its prediction |
|
// to a multiple of quantization, working modulo 256, taking care not to cross |
|
// a boundary (inclusive upper limit). |
|
static uint8_t NearLosslessComponent(uint8_t value, uint8_t predict, |
|
uint8_t boundary, int quantization) { |
|
const int residual = (value - predict) & 0xff; |
|
const int boundary_residual = (boundary - predict) & 0xff; |
|
const int lower = residual & ~(quantization - 1); |
|
const int upper = lower + quantization; |
|
// Resolve ties towards a value closer to the prediction (i.e. towards lower |
|
// if value comes after prediction and towards upper otherwise). |
|
const int bias = ((boundary - value) & 0xff) < boundary_residual; |
|
if (residual - lower < upper - residual + bias) { |
|
// lower is closer to residual than upper. |
|
if (residual > boundary_residual && lower <= boundary_residual) { |
|
// Halve quantization step to avoid crossing boundary. This midpoint is |
|
// on the same side of boundary as residual because midpoint >= residual |
|
// (since lower is closer than upper) and residual is above the boundary. |
|
return lower + (quantization >> 1); |
|
} |
|
return lower; |
|
} else { |
|
// upper is closer to residual than lower. |
|
if (residual <= boundary_residual && upper > boundary_residual) { |
|
// Halve quantization step to avoid crossing boundary. This midpoint is |
|
// on the same side of boundary as residual because midpoint <= residual |
|
// (since upper is closer than lower) and residual is below the boundary. |
|
return lower + (quantization >> 1); |
|
} |
|
return upper & 0xff; |
|
} |
|
} |
|
|
|
// Quantize every component of the difference between the actual pixel value and |
|
// its prediction to a multiple of a quantization (a power of 2, not larger than |
|
// max_quantization which is a power of 2, smaller than max_diff). Take care if |
|
// value and predict have undergone subtract green, which means that red and |
|
// blue are represented as offsets from green. |
|
static uint32_t NearLossless(uint32_t value, uint32_t predict, |
|
int max_quantization, int max_diff, |
|
int used_subtract_green) { |
|
int quantization; |
|
uint8_t new_green = 0; |
|
uint8_t green_diff = 0; |
|
uint8_t a, r, g, b; |
|
if (max_diff <= 2) { |
|
return VP8LSubPixels(value, predict); |
|
} |
|
quantization = max_quantization; |
|
while (quantization >= max_diff) { |
|
quantization >>= 1; |
|
} |
|
if ((value >> 24) == 0 || (value >> 24) == 0xff) { |
|
// Preserve transparency of fully transparent or fully opaque pixels. |
|
a = ((value >> 24) - (predict >> 24)) & 0xff; |
|
} else { |
|
a = NearLosslessComponent(value >> 24, predict >> 24, 0xff, quantization); |
|
} |
|
g = NearLosslessComponent((value >> 8) & 0xff, (predict >> 8) & 0xff, 0xff, |
|
quantization); |
|
if (used_subtract_green) { |
|
// The green offset will be added to red and blue components during decoding |
|
// to obtain the actual red and blue values. |
|
new_green = ((predict >> 8) + g) & 0xff; |
|
// The amount by which green has been adjusted during quantization. It is |
|
// subtracted from red and blue for compensation, to avoid accumulating two |
|
// quantization errors in them. |
|
green_diff = (new_green - (value >> 8)) & 0xff; |
|
} |
|
r = NearLosslessComponent(((value >> 16) - green_diff) & 0xff, |
|
(predict >> 16) & 0xff, 0xff - new_green, |
|
quantization); |
|
b = NearLosslessComponent((value - green_diff) & 0xff, predict & 0xff, |
|
0xff - new_green, quantization); |
|
return ((uint32_t)a << 24) | ((uint32_t)r << 16) | ((uint32_t)g << 8) | b; |
|
} |
|
|
|
// Stores the difference between the pixel and its prediction in "out". |
|
// In case of a lossy encoding, updates the source image to avoid propagating |
|
// the deviation further to pixels which depend on the current pixel for their |
|
// predictions. |
|
static WEBP_INLINE void GetResidual( |
|
int width, int height, uint32_t* const upper_row, |
|
uint32_t* const current_row, const uint8_t* const max_diffs, int mode, |
|
int x_start, int x_end, int y, int max_quantization, int exact, |
|
int used_subtract_green, uint32_t* const out) { |
|
if (exact) { |
|
PredictBatch(mode, x_start, y, x_end - x_start, current_row, upper_row, |
|
out); |
|
} else { |
|
const VP8LPredictorFunc pred_func = VP8LPredictors[mode]; |
|
int x; |
|
for (x = x_start; x < x_end; ++x) { |
|
uint32_t predict; |
|
uint32_t residual; |
|
if (y == 0) { |
|
predict = (x == 0) ? ARGB_BLACK : current_row[x - 1]; // Left. |
|
} else if (x == 0) { |
|
predict = upper_row[x]; // Top. |
|
} else { |
|
predict = pred_func(current_row[x - 1], upper_row + x); |
|
} |
|
if (max_quantization == 1 || mode == 0 || y == 0 || y == height - 1 || |
|
x == 0 || x == width - 1) { |
|
residual = VP8LSubPixels(current_row[x], predict); |
|
} else { |
|
residual = NearLossless(current_row[x], predict, max_quantization, |
|
max_diffs[x], used_subtract_green); |
|
// Update the source image. |
|
current_row[x] = VP8LAddPixels(predict, residual); |
|
// x is never 0 here so we do not need to update upper_row like below. |
|
} |
|
if ((current_row[x] & kMaskAlpha) == 0) { |
|
// If alpha is 0, cleanup RGB. We can choose the RGB values of the |
|
// residual for best compression. The prediction of alpha itself can be |
|
// non-zero and must be kept though. We choose RGB of the residual to be |
|
// 0. |
|
residual &= kMaskAlpha; |
|
// Update the source image. |
|
current_row[x] = predict & ~kMaskAlpha; |
|
// The prediction for the rightmost pixel in a row uses the leftmost |
|
// pixel |
|
// in that row as its top-right context pixel. Hence if we change the |
|
// leftmost pixel of current_row, the corresponding change must be |
|
// applied |
|
// to upper_row as well where top-right context is being read from. |
|
if (x == 0 && y != 0) upper_row[width] = current_row[0]; |
|
} |
|
out[x - x_start] = residual; |
|
} |
|
} |
|
} |
|
|
|
// Returns best predictor and updates the accumulated histogram. |
|
// If max_quantization > 1, assumes that near lossless processing will be |
|
// applied, quantizing residuals to multiples of quantization levels up to |
|
// max_quantization (the actual quantization level depends on smoothness near |
|
// the given pixel). |
|
static int GetBestPredictorForTile(int width, int height, |
|
int tile_x, int tile_y, int bits, |
|
int accumulated[4][256], |
|
uint32_t* const argb_scratch, |
|
const uint32_t* const argb, |
|
int max_quantization, |
|
int exact, int used_subtract_green, |
|
const uint32_t* const modes) { |
|
const int kNumPredModes = 14; |
|
const int start_x = tile_x << bits; |
|
const int start_y = tile_y << bits; |
|
const int tile_size = 1 << bits; |
|
const int max_y = GetMin(tile_size, height - start_y); |
|
const int max_x = GetMin(tile_size, width - start_x); |
|
// Whether there exist columns just outside the tile. |
|
const int have_left = (start_x > 0); |
|
const int have_right = (max_x < width - start_x); |
|
// Position and size of the strip covering the tile and adjacent columns if |
|
// they exist. |
|
const int context_start_x = start_x - have_left; |
|
const int context_width = max_x + have_left + have_right; |
|
const int tiles_per_row = VP8LSubSampleSize(width, bits); |
|
// Prediction modes of the left and above neighbor tiles. |
|
const int left_mode = (tile_x > 0) ? |
|
(modes[tile_y * tiles_per_row + tile_x - 1] >> 8) & 0xff : 0xff; |
|
const int above_mode = (tile_y > 0) ? |
|
(modes[(tile_y - 1) * tiles_per_row + tile_x] >> 8) & 0xff : 0xff; |
|
// The width of upper_row and current_row is one pixel larger than image width |
|
// to allow the top right pixel to point to the leftmost pixel of the next row |
|
// when at the right edge. |
|
uint32_t* upper_row = argb_scratch; |
|
uint32_t* current_row = upper_row + width + 1; |
|
uint8_t* const max_diffs = (uint8_t*)(current_row + width + 1); |
|
float best_diff = MAX_DIFF_COST; |
|
int best_mode = 0; |
|
int mode; |
|
int histo_stack_1[4][256]; |
|
int histo_stack_2[4][256]; |
|
// Need pointers to be able to swap arrays. |
|
int (*histo_argb)[256] = histo_stack_1; |
|
int (*best_histo)[256] = histo_stack_2; |
|
int i, j; |
|
uint32_t residuals[1 << MAX_TRANSFORM_BITS]; |
|
assert(bits <= MAX_TRANSFORM_BITS); |
|
assert(max_x <= (1 << MAX_TRANSFORM_BITS)); |
|
|
|
for (mode = 0; mode < kNumPredModes; ++mode) { |
|
float cur_diff; |
|
int relative_y; |
|
memset(histo_argb, 0, sizeof(histo_stack_1)); |
|
if (start_y > 0) { |
|
// Read the row above the tile which will become the first upper_row. |
|
// Include a pixel to the left if it exists; include a pixel to the right |
|
// in all cases (wrapping to the leftmost pixel of the next row if it does |
|
// not exist). |
|
memcpy(current_row + context_start_x, |
|
argb + (start_y - 1) * width + context_start_x, |
|
sizeof(*argb) * (max_x + have_left + 1)); |
|
} |
|
for (relative_y = 0; relative_y < max_y; ++relative_y) { |
|
const int y = start_y + relative_y; |
|
int relative_x; |
|
uint32_t* tmp = upper_row; |
|
upper_row = current_row; |
|
current_row = tmp; |
|
// Read current_row. Include a pixel to the left if it exists; include a |
|
// pixel to the right in all cases except at the bottom right corner of |
|
// the image (wrapping to the leftmost pixel of the next row if it does |
|
// not exist in the current row). |
|
memcpy(current_row + context_start_x, |
|
argb + y * width + context_start_x, |
|
sizeof(*argb) * (max_x + have_left + (y + 1 < height))); |
|
if (max_quantization > 1 && y >= 1 && y + 1 < height) { |
|
MaxDiffsForRow(context_width, width, argb + y * width + context_start_x, |
|
max_diffs + context_start_x, used_subtract_green); |
|
} |
|
|
|
GetResidual(width, height, upper_row, current_row, max_diffs, mode, |
|
start_x, start_x + max_x, y, max_quantization, exact, |
|
used_subtract_green, residuals); |
|
for (relative_x = 0; relative_x < max_x; ++relative_x) { |
|
UpdateHisto(histo_argb, residuals[relative_x]); |
|
} |
|
} |
|
cur_diff = PredictionCostSpatialHistogram( |
|
(const int (*)[256])accumulated, (const int (*)[256])histo_argb); |
|
// Favor keeping the areas locally similar. |
|
if (mode == left_mode) cur_diff -= kSpatialPredictorBias; |
|
if (mode == above_mode) cur_diff -= kSpatialPredictorBias; |
|
|
|
if (cur_diff < best_diff) { |
|
int (*tmp)[256] = histo_argb; |
|
histo_argb = best_histo; |
|
best_histo = tmp; |
|
best_diff = cur_diff; |
|
best_mode = mode; |
|
} |
|
} |
|
|
|
for (i = 0; i < 4; i++) { |
|
for (j = 0; j < 256; j++) { |
|
accumulated[i][j] += best_histo[i][j]; |
|
} |
|
} |
|
|
|
return best_mode; |
|
} |
|
|
|
// Converts pixels of the image to residuals with respect to predictions. |
|
// If max_quantization > 1, applies near lossless processing, quantizing |
|
// residuals to multiples of quantization levels up to max_quantization |
|
// (the actual quantization level depends on smoothness near the given pixel). |
|
static void CopyImageWithPrediction(int width, int height, |
|
int bits, uint32_t* const modes, |
|
uint32_t* const argb_scratch, |
|
uint32_t* const argb, |
|
int low_effort, int max_quantization, |
|
int exact, int used_subtract_green) { |
|
const int tiles_per_row = VP8LSubSampleSize(width, bits); |
|
// The width of upper_row and current_row is one pixel larger than image width |
|
// to allow the top right pixel to point to the leftmost pixel of the next row |
|
// when at the right edge. |
|
uint32_t* upper_row = argb_scratch; |
|
uint32_t* current_row = upper_row + width + 1; |
|
uint8_t* current_max_diffs = (uint8_t*)(current_row + width + 1); |
|
uint8_t* lower_max_diffs = current_max_diffs + width; |
|
int y; |
|
|
|
for (y = 0; y < height; ++y) { |
|
int x; |
|
uint32_t* const tmp32 = upper_row; |
|
upper_row = current_row; |
|
current_row = tmp32; |
|
memcpy(current_row, argb + y * width, |
|
sizeof(*argb) * (width + (y + 1 < height))); |
|
|
|
if (low_effort) { |
|
PredictBatch(kPredLowEffort, 0, y, width, current_row, upper_row, |
|
argb + y * width); |
|
} else { |
|
if (max_quantization > 1) { |
|
// Compute max_diffs for the lower row now, because that needs the |
|
// contents of argb for the current row, which we will overwrite with |
|
// residuals before proceeding with the next row. |
|
uint8_t* const tmp8 = current_max_diffs; |
|
current_max_diffs = lower_max_diffs; |
|
lower_max_diffs = tmp8; |
|
if (y + 2 < height) { |
|
MaxDiffsForRow(width, width, argb + (y + 1) * width, lower_max_diffs, |
|
used_subtract_green); |
|
} |
|
} |
|
for (x = 0; x < width;) { |
|
const int mode = |
|
(modes[(y >> bits) * tiles_per_row + (x >> bits)] >> 8) & 0xff; |
|
int x_end = x + (1 << bits); |
|
if (x_end > width) x_end = width; |
|
GetResidual(width, height, upper_row, current_row, current_max_diffs, |
|
mode, x, x_end, y, max_quantization, exact, |
|
used_subtract_green, argb + y * width + x); |
|
x = x_end; |
|
} |
|
} |
|
} |
|
} |
|
|
|
// Finds the best predictor for each tile, and converts the image to residuals |
|
// with respect to predictions. If near_lossless_quality < 100, applies |
|
// near lossless processing, shaving off more bits of residuals for lower |
|
// qualities. |
|
void VP8LResidualImage(int width, int height, int bits, int low_effort, |
|
uint32_t* const argb, uint32_t* const argb_scratch, |
|
uint32_t* const image, int near_lossless_quality, |
|
int exact, int used_subtract_green) { |
|
const int tiles_per_row = VP8LSubSampleSize(width, bits); |
|
const int tiles_per_col = VP8LSubSampleSize(height, bits); |
|
int tile_y; |
|
int histo[4][256]; |
|
const int max_quantization = 1 << VP8LNearLosslessBits(near_lossless_quality); |
|
if (low_effort) { |
|
int i; |
|
for (i = 0; i < tiles_per_row * tiles_per_col; ++i) { |
|
image[i] = ARGB_BLACK | (kPredLowEffort << 8); |
|
} |
|
} else { |
|
memset(histo, 0, sizeof(histo)); |
|
for (tile_y = 0; tile_y < tiles_per_col; ++tile_y) { |
|
int tile_x; |
|
for (tile_x = 0; tile_x < tiles_per_row; ++tile_x) { |
|
const int pred = GetBestPredictorForTile(width, height, tile_x, tile_y, |
|
bits, histo, argb_scratch, argb, max_quantization, exact, |
|
used_subtract_green, image); |
|
image[tile_y * tiles_per_row + tile_x] = ARGB_BLACK | (pred << 8); |
|
} |
|
} |
|
} |
|
|
|
CopyImageWithPrediction(width, height, bits, image, argb_scratch, argb, |
|
low_effort, max_quantization, exact, |
|
used_subtract_green); |
|
} |
|
|
|
//------------------------------------------------------------------------------ |
|
// Color transform functions. |
|
|
|
static WEBP_INLINE void MultipliersClear(VP8LMultipliers* const m) { |
|
m->green_to_red_ = 0; |
|
m->green_to_blue_ = 0; |
|
m->red_to_blue_ = 0; |
|
} |
|
|
|
static WEBP_INLINE void ColorCodeToMultipliers(uint32_t color_code, |
|
VP8LMultipliers* const m) { |
|
m->green_to_red_ = (color_code >> 0) & 0xff; |
|
m->green_to_blue_ = (color_code >> 8) & 0xff; |
|
m->red_to_blue_ = (color_code >> 16) & 0xff; |
|
} |
|
|
|
static WEBP_INLINE uint32_t MultipliersToColorCode( |
|
const VP8LMultipliers* const m) { |
|
return 0xff000000u | |
|
((uint32_t)(m->red_to_blue_) << 16) | |
|
((uint32_t)(m->green_to_blue_) << 8) | |
|
m->green_to_red_; |
|
} |
|
|
|
static float PredictionCostCrossColor(const int accumulated[256], |
|
const int counts[256]) { |
|
// Favor low entropy, locally and globally. |
|
// Favor small absolute values for PredictionCostSpatial |
|
static const double kExpValue = 2.4; |
|
return VP8LCombinedShannonEntropy(counts, accumulated) + |
|
PredictionCostSpatial(counts, 3, kExpValue); |
|
} |
|
|
|
static float GetPredictionCostCrossColorRed( |
|
const uint32_t* argb, int stride, int tile_width, int tile_height, |
|
VP8LMultipliers prev_x, VP8LMultipliers prev_y, int green_to_red, |
|
const int accumulated_red_histo[256]) { |
|
int histo[256] = { 0 }; |
|
float cur_diff; |
|
|
|
VP8LCollectColorRedTransforms(argb, stride, tile_width, tile_height, |
|
green_to_red, histo); |
|
|
|
cur_diff = PredictionCostCrossColor(accumulated_red_histo, histo); |
|
if ((uint8_t)green_to_red == prev_x.green_to_red_) { |
|
cur_diff -= 3; // favor keeping the areas locally similar |
|
} |
|
if ((uint8_t)green_to_red == prev_y.green_to_red_) { |
|
cur_diff -= 3; // favor keeping the areas locally similar |
|
} |
|
if (green_to_red == 0) { |
|
cur_diff -= 3; |
|
} |
|
return cur_diff; |
|
} |
|
|
|
static void GetBestGreenToRed( |
|
const uint32_t* argb, int stride, int tile_width, int tile_height, |
|
VP8LMultipliers prev_x, VP8LMultipliers prev_y, int quality, |
|
const int accumulated_red_histo[256], VP8LMultipliers* const best_tx) { |
|
const int kMaxIters = 4 + ((7 * quality) >> 8); // in range [4..6] |
|
int green_to_red_best = 0; |
|
int iter, offset; |
|
float best_diff = GetPredictionCostCrossColorRed( |
|
argb, stride, tile_width, tile_height, prev_x, prev_y, |
|
green_to_red_best, accumulated_red_histo); |
|
for (iter = 0; iter < kMaxIters; ++iter) { |
|
// ColorTransformDelta is a 3.5 bit fixed point, so 32 is equal to |
|
// one in color computation. Having initial delta here as 1 is sufficient |
|
// to explore the range of (-2, 2). |
|
const int delta = 32 >> iter; |
|
// Try a negative and a positive delta from the best known value. |
|
for (offset = -delta; offset <= delta; offset += 2 * delta) { |
|
const int green_to_red_cur = offset + green_to_red_best; |
|
const float cur_diff = GetPredictionCostCrossColorRed( |
|
argb, stride, tile_width, tile_height, prev_x, prev_y, |
|
green_to_red_cur, accumulated_red_histo); |
|
if (cur_diff < best_diff) { |
|
best_diff = cur_diff; |
|
green_to_red_best = green_to_red_cur; |
|
} |
|
} |
|
} |
|
best_tx->green_to_red_ = green_to_red_best; |
|
} |
|
|
|
static float GetPredictionCostCrossColorBlue( |
|
const uint32_t* argb, int stride, int tile_width, int tile_height, |
|
VP8LMultipliers prev_x, VP8LMultipliers prev_y, |
|
int green_to_blue, int red_to_blue, const int accumulated_blue_histo[256]) { |
|
int histo[256] = { 0 }; |
|
float cur_diff; |
|
|
|
VP8LCollectColorBlueTransforms(argb, stride, tile_width, tile_height, |
|
green_to_blue, red_to_blue, histo); |
|
|
|
cur_diff = PredictionCostCrossColor(accumulated_blue_histo, histo); |
|
if ((uint8_t)green_to_blue == prev_x.green_to_blue_) { |
|
cur_diff -= 3; // favor keeping the areas locally similar |
|
} |
|
if ((uint8_t)green_to_blue == prev_y.green_to_blue_) { |
|
cur_diff -= 3; // favor keeping the areas locally similar |
|
} |
|
if ((uint8_t)red_to_blue == prev_x.red_to_blue_) { |
|
cur_diff -= 3; // favor keeping the areas locally similar |
|
} |
|
if ((uint8_t)red_to_blue == prev_y.red_to_blue_) { |
|
cur_diff -= 3; // favor keeping the areas locally similar |
|
} |
|
if (green_to_blue == 0) { |
|
cur_diff -= 3; |
|
} |
|
if (red_to_blue == 0) { |
|
cur_diff -= 3; |
|
} |
|
return cur_diff; |
|
} |
|
|
|
#define kGreenRedToBlueNumAxis 8 |
|
#define kGreenRedToBlueMaxIters 7 |
|
static void GetBestGreenRedToBlue( |
|
const uint32_t* argb, int stride, int tile_width, int tile_height, |
|
VP8LMultipliers prev_x, VP8LMultipliers prev_y, int quality, |
|
const int accumulated_blue_histo[256], |
|
VP8LMultipliers* const best_tx) { |
|
const int8_t offset[kGreenRedToBlueNumAxis][2] = |
|
{{0, -1}, {0, 1}, {-1, 0}, {1, 0}, {-1, -1}, {-1, 1}, {1, -1}, {1, 1}}; |
|
const int8_t delta_lut[kGreenRedToBlueMaxIters] = { 16, 16, 8, 4, 2, 2, 2 }; |
|
const int iters = |
|
(quality < 25) ? 1 : (quality > 50) ? kGreenRedToBlueMaxIters : 4; |
|
int green_to_blue_best = 0; |
|
int red_to_blue_best = 0; |
|
int iter; |
|
// Initial value at origin: |
|
float best_diff = GetPredictionCostCrossColorBlue( |
|
argb, stride, tile_width, tile_height, prev_x, prev_y, |
|
green_to_blue_best, red_to_blue_best, accumulated_blue_histo); |
|
for (iter = 0; iter < iters; ++iter) { |
|
const int delta = delta_lut[iter]; |
|
int axis; |
|
for (axis = 0; axis < kGreenRedToBlueNumAxis; ++axis) { |
|
const int green_to_blue_cur = |
|
offset[axis][0] * delta + green_to_blue_best; |
|
const int red_to_blue_cur = offset[axis][1] * delta + red_to_blue_best; |
|
const float cur_diff = GetPredictionCostCrossColorBlue( |
|
argb, stride, tile_width, tile_height, prev_x, prev_y, |
|
green_to_blue_cur, red_to_blue_cur, accumulated_blue_histo); |
|
if (cur_diff < best_diff) { |
|
best_diff = cur_diff; |
|
green_to_blue_best = green_to_blue_cur; |
|
red_to_blue_best = red_to_blue_cur; |
|
} |
|
if (quality < 25 && iter == 4) { |
|
// Only axis aligned diffs for lower quality. |
|
break; // next iter. |
|
} |
|
} |
|
if (delta == 2 && green_to_blue_best == 0 && red_to_blue_best == 0) { |
|
// Further iterations would not help. |
|
break; // out of iter-loop. |
|
} |
|
} |
|
best_tx->green_to_blue_ = green_to_blue_best; |
|
best_tx->red_to_blue_ = red_to_blue_best; |
|
} |
|
#undef kGreenRedToBlueMaxIters |
|
#undef kGreenRedToBlueNumAxis |
|
|
|
static VP8LMultipliers GetBestColorTransformForTile( |
|
int tile_x, int tile_y, int bits, |
|
VP8LMultipliers prev_x, |
|
VP8LMultipliers prev_y, |
|
int quality, int xsize, int ysize, |
|
const int accumulated_red_histo[256], |
|
const int accumulated_blue_histo[256], |
|
const uint32_t* const argb) { |
|
const int max_tile_size = 1 << bits; |
|
const int tile_y_offset = tile_y * max_tile_size; |
|
const int tile_x_offset = tile_x * max_tile_size; |
|
const int all_x_max = GetMin(tile_x_offset + max_tile_size, xsize); |
|
const int all_y_max = GetMin(tile_y_offset + max_tile_size, ysize); |
|
const int tile_width = all_x_max - tile_x_offset; |
|
const int tile_height = all_y_max - tile_y_offset; |
|
const uint32_t* const tile_argb = argb + tile_y_offset * xsize |
|
+ tile_x_offset; |
|
VP8LMultipliers best_tx; |
|
MultipliersClear(&best_tx); |
|
|
|
GetBestGreenToRed(tile_argb, xsize, tile_width, tile_height, |
|
prev_x, prev_y, quality, accumulated_red_histo, &best_tx); |
|
GetBestGreenRedToBlue(tile_argb, xsize, tile_width, tile_height, |
|
prev_x, prev_y, quality, accumulated_blue_histo, |
|
&best_tx); |
|
return best_tx; |
|
} |
|
|
|
static void CopyTileWithColorTransform(int xsize, int ysize, |
|
int tile_x, int tile_y, |
|
int max_tile_size, |
|
VP8LMultipliers color_transform, |
|
uint32_t* argb) { |
|
const int xscan = GetMin(max_tile_size, xsize - tile_x); |
|
int yscan = GetMin(max_tile_size, ysize - tile_y); |
|
argb += tile_y * xsize + tile_x; |
|
while (yscan-- > 0) { |
|
VP8LTransformColor(&color_transform, argb, xscan); |
|
argb += xsize; |
|
} |
|
} |
|
|
|
void VP8LColorSpaceTransform(int width, int height, int bits, int quality, |
|
uint32_t* const argb, uint32_t* image) { |
|
const int max_tile_size = 1 << bits; |
|
const int tile_xsize = VP8LSubSampleSize(width, bits); |
|
const int tile_ysize = VP8LSubSampleSize(height, bits); |
|
int accumulated_red_histo[256] = { 0 }; |
|
int accumulated_blue_histo[256] = { 0 }; |
|
int tile_x, tile_y; |
|
VP8LMultipliers prev_x, prev_y; |
|
MultipliersClear(&prev_y); |
|
MultipliersClear(&prev_x); |
|
for (tile_y = 0; tile_y < tile_ysize; ++tile_y) { |
|
for (tile_x = 0; tile_x < tile_xsize; ++tile_x) { |
|
int y; |
|
const int tile_x_offset = tile_x * max_tile_size; |
|
const int tile_y_offset = tile_y * max_tile_size; |
|
const int all_x_max = GetMin(tile_x_offset + max_tile_size, width); |
|
const int all_y_max = GetMin(tile_y_offset + max_tile_size, height); |
|
const int offset = tile_y * tile_xsize + tile_x; |
|
if (tile_y != 0) { |
|
ColorCodeToMultipliers(image[offset - tile_xsize], &prev_y); |
|
} |
|
prev_x = GetBestColorTransformForTile(tile_x, tile_y, bits, |
|
prev_x, prev_y, |
|
quality, width, height, |
|
accumulated_red_histo, |
|
accumulated_blue_histo, |
|
argb); |
|
image[offset] = MultipliersToColorCode(&prev_x); |
|
CopyTileWithColorTransform(width, height, tile_x_offset, tile_y_offset, |
|
max_tile_size, prev_x, argb); |
|
|
|
// Gather accumulated histogram data. |
|
for (y = tile_y_offset; y < all_y_max; ++y) { |
|
int ix = y * width + tile_x_offset; |
|
const int ix_end = ix + all_x_max - tile_x_offset; |
|
for (; ix < ix_end; ++ix) { |
|
const uint32_t pix = argb[ix]; |
|
if (ix >= 2 && |
|
pix == argb[ix - 2] && |
|
pix == argb[ix - 1]) { |
|
continue; // repeated pixels are handled by backward references |
|
} |
|
if (ix >= width + 2 && |
|
argb[ix - 2] == argb[ix - width - 2] && |
|
argb[ix - 1] == argb[ix - width - 1] && |
|
pix == argb[ix - width]) { |
|
continue; // repeated pixels are handled by backward references |
|
} |
|
++accumulated_red_histo[(pix >> 16) & 0xff]; |
|
++accumulated_blue_histo[(pix >> 0) & 0xff]; |
|
} |
|
} |
|
} |
|
} |
|
}
|
|
|