mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
215 lines
7.2 KiB
215 lines
7.2 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved. |
|
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// @Authors |
|
// Peng Xiao, pengxiao@multicorewareinc.com |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other oclMaterials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors as is and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "test_precomp.hpp" |
|
|
|
#ifdef HAVE_OPENCV_OCL |
|
|
|
using namespace std; |
|
using std::tr1::get; |
|
|
|
static bool keyPointsEquals(const cv::KeyPoint& p1, const cv::KeyPoint& p2) |
|
{ |
|
const double maxPtDif = 0.1; |
|
const double maxSizeDif = 0.1; |
|
const double maxAngleDif = 0.1; |
|
const double maxResponseDif = 0.01; |
|
|
|
double dist = cv::norm(p1.pt - p2.pt); |
|
|
|
if (dist < maxPtDif && |
|
fabs(p1.size - p2.size) < maxSizeDif && |
|
abs(p1.angle - p2.angle) < maxAngleDif && |
|
abs(p1.response - p2.response) < maxResponseDif && |
|
p1.octave == p2.octave && |
|
p1.class_id == p2.class_id) |
|
{ |
|
return true; |
|
} |
|
|
|
return false; |
|
} |
|
|
|
static int getMatchedPointsCount(std::vector<cv::KeyPoint>& gold, std::vector<cv::KeyPoint>& actual) |
|
{ |
|
std::sort(actual.begin(), actual.end(), perf::comparators::KeypointGreater()); |
|
std::sort(gold.begin(), gold.end(), perf::comparators::KeypointGreater()); |
|
|
|
int validCount = 0; |
|
|
|
for (size_t i = 0; i < gold.size(); ++i) |
|
{ |
|
const cv::KeyPoint& p1 = gold[i]; |
|
const cv::KeyPoint& p2 = actual[i]; |
|
|
|
if (keyPointsEquals(p1, p2)) |
|
++validCount; |
|
} |
|
|
|
return validCount; |
|
} |
|
|
|
static int getMatchedPointsCount(const std::vector<cv::KeyPoint>& keypoints1, const std::vector<cv::KeyPoint>& keypoints2, const std::vector<cv::DMatch>& matches) |
|
{ |
|
int validCount = 0; |
|
|
|
for (size_t i = 0; i < matches.size(); ++i) |
|
{ |
|
const cv::DMatch& m = matches[i]; |
|
|
|
const cv::KeyPoint& p1 = keypoints1[m.queryIdx]; |
|
const cv::KeyPoint& p2 = keypoints2[m.trainIdx]; |
|
|
|
if (keyPointsEquals(p1, p2)) |
|
++validCount; |
|
} |
|
|
|
return validCount; |
|
} |
|
|
|
IMPLEMENT_PARAM_CLASS(HessianThreshold, double) |
|
IMPLEMENT_PARAM_CLASS(Octaves, int) |
|
IMPLEMENT_PARAM_CLASS(OctaveLayers, int) |
|
IMPLEMENT_PARAM_CLASS(Extended, bool) |
|
IMPLEMENT_PARAM_CLASS(Upright, bool) |
|
|
|
PARAM_TEST_CASE(SURF, HessianThreshold, Octaves, OctaveLayers, Extended, Upright) |
|
{ |
|
double hessianThreshold; |
|
int nOctaves; |
|
int nOctaveLayers; |
|
bool extended; |
|
bool upright; |
|
|
|
virtual void SetUp() |
|
{ |
|
hessianThreshold = get<0>(GetParam()); |
|
nOctaves = get<1>(GetParam()); |
|
nOctaveLayers = get<2>(GetParam()); |
|
extended = get<3>(GetParam()); |
|
upright = get<4>(GetParam()); |
|
} |
|
}; |
|
|
|
TEST_P(SURF, DISABLED_Detector) |
|
{ |
|
cv::Mat image = cv::imread(string(cvtest::TS::ptr()->get_data_path()) + "shared/fruits.png", cv::IMREAD_GRAYSCALE); |
|
ASSERT_FALSE(image.empty()); |
|
|
|
cv::ocl::SURF_OCL surf; |
|
surf.hessianThreshold = static_cast<float>(hessianThreshold); |
|
surf.nOctaves = nOctaves; |
|
surf.nOctaveLayers = nOctaveLayers; |
|
surf.extended = extended; |
|
surf.upright = upright; |
|
surf.keypointsRatio = 0.05f; |
|
|
|
std::vector<cv::KeyPoint> keypoints; |
|
surf(cv::ocl::oclMat(image), cv::ocl::oclMat(), keypoints); |
|
|
|
cv::SURF surf_gold; |
|
surf_gold.hessianThreshold = hessianThreshold; |
|
surf_gold.nOctaves = nOctaves; |
|
surf_gold.nOctaveLayers = nOctaveLayers; |
|
surf_gold.extended = extended; |
|
surf_gold.upright = upright; |
|
|
|
std::vector<cv::KeyPoint> keypoints_gold; |
|
surf_gold(image, cv::noArray(), keypoints_gold); |
|
|
|
ASSERT_EQ(keypoints_gold.size(), keypoints.size()); |
|
int matchedCount = getMatchedPointsCount(keypoints_gold, keypoints); |
|
double matchedRatio = static_cast<double>(matchedCount) / keypoints_gold.size(); |
|
|
|
EXPECT_GT(matchedRatio, 0.99); |
|
} |
|
|
|
TEST_P(SURF, DISABLED_Descriptor) |
|
{ |
|
cv::Mat image = cv::imread(string(cvtest::TS::ptr()->get_data_path()) + "shared/fruits.png", cv::IMREAD_GRAYSCALE); |
|
ASSERT_FALSE(image.empty()); |
|
|
|
cv::ocl::SURF_OCL surf; |
|
surf.hessianThreshold = static_cast<float>(hessianThreshold); |
|
surf.nOctaves = nOctaves; |
|
surf.nOctaveLayers = nOctaveLayers; |
|
surf.extended = extended; |
|
surf.upright = upright; |
|
surf.keypointsRatio = 0.05f; |
|
|
|
cv::SURF surf_gold; |
|
surf_gold.hessianThreshold = hessianThreshold; |
|
surf_gold.nOctaves = nOctaves; |
|
surf_gold.nOctaveLayers = nOctaveLayers; |
|
surf_gold.extended = extended; |
|
surf_gold.upright = upright; |
|
|
|
std::vector<cv::KeyPoint> keypoints; |
|
surf_gold(image, cv::noArray(), keypoints); |
|
|
|
cv::ocl::oclMat descriptors; |
|
surf(cv::ocl::oclMat(image), cv::ocl::oclMat(), keypoints, descriptors, true); |
|
|
|
cv::Mat descriptors_gold; |
|
surf_gold(image, cv::noArray(), keypoints, descriptors_gold, true); |
|
|
|
cv::BFMatcher matcher(cv::NORM_L2); |
|
std::vector<cv::DMatch> matches; |
|
matcher.match(descriptors_gold, cv::Mat(descriptors), matches); |
|
|
|
int matchedCount = getMatchedPointsCount(keypoints, keypoints, matches); |
|
double matchedRatio = static_cast<double>(matchedCount) / keypoints.size(); |
|
|
|
EXPECT_GT(matchedRatio, 0.35); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(OCL_Features2D, SURF, testing::Combine( |
|
testing::Values(HessianThreshold(500.0), HessianThreshold(1000.0)), |
|
testing::Values(Octaves(3), Octaves(4)), |
|
testing::Values(OctaveLayers(2), OctaveLayers(3)), |
|
testing::Values(Extended(false), Extended(true)), |
|
testing::Values(Upright(false), Upright(true)))); |
|
|
|
#endif // HAVE_OPENCV_OCL
|
|
|