mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
238 lines
9.6 KiB
238 lines
9.6 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "test_precomp.hpp" |
|
|
|
namespace opencv_test { namespace { |
|
|
|
#define OUTPUT_SAVING 0 |
|
#if OUTPUT_SAVING |
|
#define SAVE(x) std::vector<int> params;\ |
|
params.push_back(16);\ |
|
params.push_back(0);\ |
|
imwrite(folder + "output.png", x ,params); |
|
#else |
|
#define SAVE(x) |
|
#endif |
|
|
|
static const double numerical_precision = 0.05; // 95% of pixels should have exact values |
|
|
|
TEST(Photo_SeamlessClone_normal, regression) |
|
{ |
|
string folder = string(cvtest::TS::ptr()->get_data_path()) + "cloning/Normal_Cloning/"; |
|
string original_path1 = folder + "source1.png"; |
|
string original_path2 = folder + "destination1.png"; |
|
string original_path3 = folder + "mask.png"; |
|
string reference_path = folder + "reference.png"; |
|
|
|
Mat source = imread(original_path1, IMREAD_COLOR); |
|
Mat destination = imread(original_path2, IMREAD_COLOR); |
|
Mat mask = imread(original_path3, IMREAD_COLOR); |
|
|
|
ASSERT_FALSE(source.empty()) << "Could not load source image " << original_path1; |
|
ASSERT_FALSE(destination.empty()) << "Could not load destination image " << original_path2; |
|
ASSERT_FALSE(mask.empty()) << "Could not load mask image " << original_path3; |
|
|
|
Mat result; |
|
Point p; |
|
p.x = destination.size().width/2; |
|
p.y = destination.size().height/2; |
|
seamlessClone(source, destination, mask, p, result, 1); |
|
|
|
Mat reference = imread(reference_path); |
|
ASSERT_FALSE(reference.empty()) << "Could not load reference image " << reference_path; |
|
|
|
SAVE(result); |
|
|
|
double errorINF = cvtest::norm(reference, result, NORM_INF); |
|
EXPECT_LE(errorINF, 1); |
|
double errorL1 = cvtest::norm(reference, result, NORM_L1); |
|
EXPECT_LE(errorL1, reference.total() * numerical_precision) << "size=" << reference.size(); |
|
} |
|
|
|
TEST(Photo_SeamlessClone_mixed, regression) |
|
{ |
|
string folder = string(cvtest::TS::ptr()->get_data_path()) + "cloning/Mixed_Cloning/"; |
|
string original_path1 = folder + "source1.png"; |
|
string original_path2 = folder + "destination1.png"; |
|
string original_path3 = folder + "mask.png"; |
|
string reference_path = folder + "reference.png"; |
|
|
|
Mat source = imread(original_path1, IMREAD_COLOR); |
|
Mat destination = imread(original_path2, IMREAD_COLOR); |
|
Mat mask = imread(original_path3, IMREAD_COLOR); |
|
|
|
ASSERT_FALSE(source.empty()) << "Could not load source image " << original_path1; |
|
ASSERT_FALSE(destination.empty()) << "Could not load destination image " << original_path2; |
|
ASSERT_FALSE(mask.empty()) << "Could not load mask image " << original_path3; |
|
|
|
Mat result; |
|
Point p; |
|
p.x = destination.size().width/2; |
|
p.y = destination.size().height/2; |
|
seamlessClone(source, destination, mask, p, result, 2); |
|
|
|
SAVE(result); |
|
|
|
Mat reference = imread(reference_path); |
|
ASSERT_FALSE(reference.empty()) << "Could not load reference image " << reference_path; |
|
|
|
double errorINF = cvtest::norm(reference, result, NORM_INF); |
|
EXPECT_LE(errorINF, 1); |
|
double errorL1 = cvtest::norm(reference, result, NORM_L1); |
|
EXPECT_LE(errorL1, reference.total() * numerical_precision) << "size=" << reference.size(); |
|
} |
|
|
|
TEST(Photo_SeamlessClone_featureExchange, regression) |
|
{ |
|
string folder = string(cvtest::TS::ptr()->get_data_path()) + "cloning/Monochrome_Transfer/"; |
|
string original_path1 = folder + "source1.png"; |
|
string original_path2 = folder + "destination1.png"; |
|
string original_path3 = folder + "mask.png"; |
|
string reference_path = folder + "reference.png"; |
|
|
|
Mat source = imread(original_path1, IMREAD_COLOR); |
|
Mat destination = imread(original_path2, IMREAD_COLOR); |
|
Mat mask = imread(original_path3, IMREAD_COLOR); |
|
|
|
ASSERT_FALSE(source.empty()) << "Could not load source image " << original_path1; |
|
ASSERT_FALSE(destination.empty()) << "Could not load destination image " << original_path2; |
|
ASSERT_FALSE(mask.empty()) << "Could not load mask image " << original_path3; |
|
|
|
Mat result; |
|
Point p; |
|
p.x = destination.size().width/2; |
|
p.y = destination.size().height/2; |
|
seamlessClone(source, destination, mask, p, result, 3); |
|
|
|
SAVE(result); |
|
|
|
Mat reference = imread(reference_path); |
|
ASSERT_FALSE(reference.empty()) << "Could not load reference image " << reference_path; |
|
|
|
double errorINF = cvtest::norm(reference, result, NORM_INF); |
|
EXPECT_LE(errorINF, 1); |
|
double errorL1 = cvtest::norm(reference, result, NORM_L1); |
|
EXPECT_LE(errorL1, reference.total() * numerical_precision) << "size=" << reference.size(); |
|
} |
|
|
|
TEST(Photo_SeamlessClone_colorChange, regression) |
|
{ |
|
string folder = string(cvtest::TS::ptr()->get_data_path()) + "cloning/color_change/"; |
|
string original_path1 = folder + "source1.png"; |
|
string original_path2 = folder + "mask.png"; |
|
string reference_path = folder + "reference.png"; |
|
|
|
Mat source = imread(original_path1, IMREAD_COLOR); |
|
Mat mask = imread(original_path2, IMREAD_COLOR); |
|
|
|
ASSERT_FALSE(source.empty()) << "Could not load source image " << original_path1; |
|
ASSERT_FALSE(mask.empty()) << "Could not load mask image " << original_path2; |
|
|
|
Mat result; |
|
colorChange(source, mask, result, 1.5, .5, .5); |
|
|
|
SAVE(result); |
|
|
|
Mat reference = imread(reference_path); |
|
ASSERT_FALSE(reference.empty()) << "Could not load reference image " << reference_path; |
|
|
|
double errorINF = cvtest::norm(reference, result, NORM_INF); |
|
EXPECT_LE(errorINF, 1); |
|
double errorL1 = cvtest::norm(reference, result, NORM_L1); |
|
EXPECT_LE(errorL1, reference.total() * numerical_precision) << "size=" << reference.size(); |
|
} |
|
|
|
TEST(Photo_SeamlessClone_illuminationChange, regression) |
|
{ |
|
string folder = string(cvtest::TS::ptr()->get_data_path()) + "cloning/Illumination_Change/"; |
|
string original_path1 = folder + "source1.png"; |
|
string original_path2 = folder + "mask.png"; |
|
string reference_path = folder + "reference.png"; |
|
|
|
Mat source = imread(original_path1, IMREAD_COLOR); |
|
Mat mask = imread(original_path2, IMREAD_COLOR); |
|
|
|
ASSERT_FALSE(source.empty()) << "Could not load source image " << original_path1; |
|
ASSERT_FALSE(mask.empty()) << "Could not load mask image " << original_path2; |
|
|
|
Mat result; |
|
illuminationChange(source, mask, result, 0.2f, 0.4f); |
|
|
|
SAVE(result); |
|
|
|
Mat reference = imread(reference_path); |
|
ASSERT_FALSE(reference.empty()) << "Could not load reference image " << reference_path; |
|
|
|
double errorINF = cvtest::norm(reference, result, NORM_INF); |
|
EXPECT_LE(errorINF, 1); |
|
double errorL1 = cvtest::norm(reference, result, NORM_L1); |
|
EXPECT_LE(errorL1, reference.total() * numerical_precision) << "size=" << reference.size(); |
|
} |
|
|
|
TEST(Photo_SeamlessClone_textureFlattening, regression) |
|
{ |
|
string folder = string(cvtest::TS::ptr()->get_data_path()) + "cloning/Texture_Flattening/"; |
|
string original_path1 = folder + "source1.png"; |
|
string original_path2 = folder + "mask.png"; |
|
string reference_path = folder + "reference.png"; |
|
|
|
Mat source = imread(original_path1, IMREAD_COLOR); |
|
Mat mask = imread(original_path2, IMREAD_COLOR); |
|
|
|
ASSERT_FALSE(source.empty()) << "Could not load source image " << original_path1; |
|
ASSERT_FALSE(mask.empty()) << "Could not load mask image " << original_path2; |
|
|
|
Mat result; |
|
textureFlattening(source, mask, result, 30, 45, 3); |
|
|
|
SAVE(result); |
|
|
|
Mat reference = imread(reference_path); |
|
ASSERT_FALSE(reference.empty()) << "Could not load reference image " << reference_path; |
|
|
|
double errorINF = cvtest::norm(reference, result, NORM_INF); |
|
EXPECT_LE(errorINF, 1); |
|
double errorL1 = cvtest::norm(reference, result, NORM_L1); |
|
EXPECT_LE(errorL1, reference.total() * numerical_precision) << "size=" << reference.size(); |
|
} |
|
|
|
}} // namespace
|
|
|