Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

138 lines
4.2 KiB

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2020 Intel Corporation
#ifndef OPENCV_GAPI_INFER_ONNX_HPP
#define OPENCV_GAPI_INFER_ONNX_HPP
#include <unordered_map>
#include <string>
#include <array>
#include <tuple> // tuple, tuple_size
#include <opencv2/gapi/opencv_includes.hpp>
#include <opencv2/gapi/util/any.hpp>
#include <opencv2/core/cvdef.h> // GAPI_EXPORTS
#include <opencv2/gapi/gkernel.hpp> // GKernelPackage
namespace cv {
namespace gapi {
namespace onnx {
GAPI_EXPORTS cv::gapi::GBackend backend();
enum class TraitAs: int {
TENSOR, //!< G-API traits an associated cv::Mat as a raw tensor
// and passes dimensions as-is
IMAGE //!< G-API traits an associated cv::Mat as an image so
// creates an "image" blob (NCHW/NHWC, etc)
};
using PostProc = std::function<void(const std::unordered_map<std::string, cv::Mat> &,
std::unordered_map<std::string, cv::Mat> &)>;
namespace detail {
struct ParamDesc {
std::string model_path;
// NB: nun_* may differ from topology's real input/output port numbers
// (e.g. topology's partial execution)
std::size_t num_in; // How many inputs are defined in the operation
std::size_t num_out; // How many outputs are defined in the operation
// NB: Here order follows the `Net` API
std::vector<std::string> input_names;
std::vector<std::string> output_names;
using ConstInput = std::pair<cv::Mat, TraitAs>;
std::unordered_map<std::string, ConstInput> const_inputs;
std::vector<cv::Scalar> mean;
std::vector<cv::Scalar> stdev;
std::vector<cv::GMatDesc> out_metas;
PostProc custom_post_proc;
std::vector<bool> normalize;
};
} // namespace detail
template<typename Net>
struct PortCfg {
using In = std::array
< std::string
, std::tuple_size<typename Net::InArgs>::value >;
using Out = std::array
< std::string
, std::tuple_size<typename Net::OutArgs>::value >;
using NormCoefs = std::array
< cv::Scalar
, std::tuple_size<typename Net::InArgs>::value >;
using Normalize = std::array
< bool
, std::tuple_size<typename Net::InArgs>::value >;
};
template<typename Net> class Params {
public:
Params(const std::string &model) {
desc.model_path = model;
desc.num_in = std::tuple_size<typename Net::InArgs>::value;
desc.num_out = std::tuple_size<typename Net::OutArgs>::value;
};
// BEGIN(G-API's network parametrization API)
GBackend backend() const { return cv::gapi::onnx::backend(); }
std::string tag() const { return Net::tag(); }
cv::util::any params() const { return { desc }; }
// END(G-API's network parametrization API)
Params<Net>& cfgInputLayers(const typename PortCfg<Net>::In &ll) {
desc.input_names.assign(ll.begin(), ll.end());
return *this;
}
Params<Net>& cfgOutputLayers(const typename PortCfg<Net>::Out &ll) {
desc.output_names.assign(ll.begin(), ll.end());
return *this;
}
Params<Net>& constInput(const std::string &layer_name,
const cv::Mat &data,
TraitAs hint = TraitAs::TENSOR) {
desc.const_inputs[layer_name] = {data, hint};
return *this;
}
Params<Net>& cfgMeanStd(const typename PortCfg<Net>::NormCoefs &m,
const typename PortCfg<Net>::NormCoefs &s) {
desc.mean.assign(m.begin(), m.end());
desc.stdev.assign(s.begin(), s.end());
return *this;
}
Params<Net>& cfgPostProc(const std::vector<cv::GMatDesc> &outs,
const PostProc &pp) {
desc.out_metas = outs;
desc.custom_post_proc = pp;
return *this;
}
Params<Net>& cfgNormalize(const typename PortCfg<Net>::Normalize &n) {
desc.normalize.assign(n.begin(), n.end());
return *this;
}
protected:
detail::ParamDesc desc;
};
} // namespace onnx
} // namespace gapi
} // namespace cv
#endif // OPENCV_GAPI_INFER_HPP