mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
236 lines
6.6 KiB
236 lines
6.6 KiB
#include <iostream> |
|
#include <vector> |
|
|
|
#include "opencv2/core.hpp" |
|
#include <opencv2/core/utility.hpp> |
|
#include "opencv2/imgproc.hpp" |
|
#include "opencv2/highgui.hpp" |
|
#include "opencv2/video.hpp" |
|
#include "opencv2/cudaoptflow.hpp" |
|
#include "opencv2/cudaimgproc.hpp" |
|
|
|
using namespace std; |
|
using namespace cv; |
|
using namespace cv::cuda; |
|
|
|
static void download(const GpuMat& d_mat, vector<Point2f>& vec) |
|
{ |
|
vec.resize(d_mat.cols); |
|
Mat mat(1, d_mat.cols, CV_32FC2, (void*)&vec[0]); |
|
d_mat.download(mat); |
|
} |
|
|
|
static void download(const GpuMat& d_mat, vector<uchar>& vec) |
|
{ |
|
vec.resize(d_mat.cols); |
|
Mat mat(1, d_mat.cols, CV_8UC1, (void*)&vec[0]); |
|
d_mat.download(mat); |
|
} |
|
|
|
static void drawArrows(Mat& frame, const vector<Point2f>& prevPts, const vector<Point2f>& nextPts, const vector<uchar>& status, Scalar line_color = Scalar(0, 0, 255)) |
|
{ |
|
for (size_t i = 0; i < prevPts.size(); ++i) |
|
{ |
|
if (status[i]) |
|
{ |
|
int line_thickness = 1; |
|
|
|
Point p = prevPts[i]; |
|
Point q = nextPts[i]; |
|
|
|
double angle = atan2((double) p.y - q.y, (double) p.x - q.x); |
|
|
|
double hypotenuse = sqrt( (double)(p.y - q.y)*(p.y - q.y) + (double)(p.x - q.x)*(p.x - q.x) ); |
|
|
|
if (hypotenuse < 1.0) |
|
continue; |
|
|
|
// Here we lengthen the arrow by a factor of three. |
|
q.x = (int) (p.x - 3 * hypotenuse * cos(angle)); |
|
q.y = (int) (p.y - 3 * hypotenuse * sin(angle)); |
|
|
|
// Now we draw the main line of the arrow. |
|
line(frame, p, q, line_color, line_thickness); |
|
|
|
// Now draw the tips of the arrow. I do some scaling so that the |
|
// tips look proportional to the main line of the arrow. |
|
|
|
p.x = (int) (q.x + 9 * cos(angle + CV_PI / 4)); |
|
p.y = (int) (q.y + 9 * sin(angle + CV_PI / 4)); |
|
line(frame, p, q, line_color, line_thickness); |
|
|
|
p.x = (int) (q.x + 9 * cos(angle - CV_PI / 4)); |
|
p.y = (int) (q.y + 9 * sin(angle - CV_PI / 4)); |
|
line(frame, p, q, line_color, line_thickness); |
|
} |
|
} |
|
} |
|
|
|
template <typename T> inline T clamp (T x, T a, T b) |
|
{ |
|
return ((x) > (a) ? ((x) < (b) ? (x) : (b)) : (a)); |
|
} |
|
|
|
template <typename T> inline T mapValue(T x, T a, T b, T c, T d) |
|
{ |
|
x = clamp(x, a, b); |
|
return c + (d - c) * (x - a) / (b - a); |
|
} |
|
|
|
static void getFlowField(const Mat& u, const Mat& v, Mat& flowField) |
|
{ |
|
float maxDisplacement = 1.0f; |
|
|
|
for (int i = 0; i < u.rows; ++i) |
|
{ |
|
const float* ptr_u = u.ptr<float>(i); |
|
const float* ptr_v = v.ptr<float>(i); |
|
|
|
for (int j = 0; j < u.cols; ++j) |
|
{ |
|
float d = max(fabsf(ptr_u[j]), fabsf(ptr_v[j])); |
|
|
|
if (d > maxDisplacement) |
|
maxDisplacement = d; |
|
} |
|
} |
|
|
|
flowField.create(u.size(), CV_8UC4); |
|
|
|
for (int i = 0; i < flowField.rows; ++i) |
|
{ |
|
const float* ptr_u = u.ptr<float>(i); |
|
const float* ptr_v = v.ptr<float>(i); |
|
|
|
|
|
Vec4b* row = flowField.ptr<Vec4b>(i); |
|
|
|
for (int j = 0; j < flowField.cols; ++j) |
|
{ |
|
row[j][0] = 0; |
|
row[j][1] = static_cast<unsigned char> (mapValue (-ptr_v[j], -maxDisplacement, maxDisplacement, 0.0f, 255.0f)); |
|
row[j][2] = static_cast<unsigned char> (mapValue ( ptr_u[j], -maxDisplacement, maxDisplacement, 0.0f, 255.0f)); |
|
row[j][3] = 255; |
|
} |
|
} |
|
} |
|
|
|
int main(int argc, const char* argv[]) |
|
{ |
|
const char* keys = |
|
"{ h help | | print help message }" |
|
"{ l left | | specify left image }" |
|
"{ r right | | specify right image }" |
|
"{ gray | | use grayscale sources [PyrLK Sparse] }" |
|
"{ win_size | 21 | specify windows size [PyrLK] }" |
|
"{ max_level | 3 | specify max level [PyrLK] }" |
|
"{ iters | 30 | specify iterations count [PyrLK] }" |
|
"{ points | 4000 | specify points count [GoodFeatureToTrack] }" |
|
"{ min_dist | 0 | specify minimal distance between points [GoodFeatureToTrack] }"; |
|
|
|
CommandLineParser cmd(argc, argv, keys); |
|
|
|
if (cmd.has("help") || !cmd.check()) |
|
{ |
|
cmd.printMessage(); |
|
cmd.printErrors(); |
|
return 0; |
|
} |
|
|
|
string fname0 = cmd.get<string>("left"); |
|
string fname1 = cmd.get<string>("right"); |
|
|
|
if (fname0.empty() || fname1.empty()) |
|
{ |
|
cerr << "Missing input file names" << endl; |
|
return -1; |
|
} |
|
|
|
bool useGray = cmd.has("gray"); |
|
int winSize = cmd.get<int>("win_size"); |
|
int maxLevel = cmd.get<int>("max_level"); |
|
int iters = cmd.get<int>("iters"); |
|
int points = cmd.get<int>("points"); |
|
double minDist = cmd.get<double>("min_dist"); |
|
|
|
Mat frame0 = imread(fname0); |
|
Mat frame1 = imread(fname1); |
|
|
|
if (frame0.empty() || frame1.empty()) |
|
{ |
|
cout << "Can't load input images" << endl; |
|
return -1; |
|
} |
|
|
|
namedWindow("PyrLK [Sparse]", WINDOW_NORMAL); |
|
namedWindow("PyrLK [Dense] Flow Field", WINDOW_NORMAL); |
|
|
|
cout << "Image size : " << frame0.cols << " x " << frame0.rows << endl; |
|
cout << "Points count : " << points << endl; |
|
|
|
cout << endl; |
|
|
|
Mat frame0Gray; |
|
cv::cvtColor(frame0, frame0Gray, COLOR_BGR2GRAY); |
|
Mat frame1Gray; |
|
cv::cvtColor(frame1, frame1Gray, COLOR_BGR2GRAY); |
|
|
|
// goodFeaturesToTrack |
|
|
|
GpuMat d_frame0Gray(frame0Gray); |
|
GpuMat d_prevPts; |
|
|
|
Ptr<cuda::CornersDetector> detector = cuda::createGoodFeaturesToTrackDetector(d_frame0Gray.type(), points, 0.01, minDist); |
|
|
|
detector->detect(d_frame0Gray, d_prevPts); |
|
|
|
// Sparse |
|
|
|
PyrLKOpticalFlow d_pyrLK; |
|
|
|
d_pyrLK.winSize.width = winSize; |
|
d_pyrLK.winSize.height = winSize; |
|
d_pyrLK.maxLevel = maxLevel; |
|
d_pyrLK.iters = iters; |
|
|
|
GpuMat d_frame0(frame0); |
|
GpuMat d_frame1(frame1); |
|
GpuMat d_frame1Gray(frame1Gray); |
|
GpuMat d_nextPts; |
|
GpuMat d_status; |
|
|
|
d_pyrLK.sparse(useGray ? d_frame0Gray : d_frame0, useGray ? d_frame1Gray : d_frame1, d_prevPts, d_nextPts, d_status); |
|
|
|
// Draw arrows |
|
|
|
vector<Point2f> prevPts(d_prevPts.cols); |
|
download(d_prevPts, prevPts); |
|
|
|
vector<Point2f> nextPts(d_nextPts.cols); |
|
download(d_nextPts, nextPts); |
|
|
|
vector<uchar> status(d_status.cols); |
|
download(d_status, status); |
|
|
|
drawArrows(frame0, prevPts, nextPts, status, Scalar(255, 0, 0)); |
|
|
|
imshow("PyrLK [Sparse]", frame0); |
|
|
|
// Dense |
|
|
|
GpuMat d_u; |
|
GpuMat d_v; |
|
|
|
d_pyrLK.dense(d_frame0Gray, d_frame1Gray, d_u, d_v); |
|
|
|
// Draw flow field |
|
|
|
Mat flowField; |
|
getFlowField(Mat(d_u), Mat(d_v), flowField); |
|
|
|
imshow("PyrLK [Dense] Flow Field", flowField); |
|
|
|
waitKey(); |
|
|
|
return 0; |
|
}
|
|
|