mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
186 lines
6.9 KiB
186 lines
6.9 KiB
/*////////////////////////////////////////////////////////////////////////////////////// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
|
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
|
|
// This is a implementation of the Logistic Regression algorithm in C++ in OpenCV. |
|
|
|
// AUTHOR: |
|
// Rahul Kavi rahulkavi[at]live[at]com |
|
// |
|
|
|
// contains a subset of data from the popular Iris Dataset (taken from |
|
// "http://archive.ics.uci.edu/ml/datasets/Iris") |
|
|
|
// # You are free to use, change, or redistribute the code in any way you wish for |
|
// # non-commercial purposes, but please maintain the name of the original author. |
|
// # This code comes with no warranty of any kind. |
|
|
|
// # |
|
// # You are free to use, change, or redistribute the code in any way you wish for |
|
// # non-commercial purposes, but please maintain the name of the original author. |
|
// # This code comes with no warranty of any kind. |
|
|
|
// # Logistic Regression ALGORITHM |
|
|
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2008-2011, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
|
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
|
|
// * Redistributions of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
|
|
// * Redistributions in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
|
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
|
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage.*/ |
|
|
|
#include <iostream> |
|
|
|
#include <opencv2/core.hpp> |
|
#include <opencv2/ml.hpp> |
|
#include <opencv2/highgui.hpp> |
|
|
|
using namespace std; |
|
using namespace cv; |
|
using namespace cv::ml; |
|
|
|
static void showImage(const Mat &data, int columns, const String &name) |
|
{ |
|
Mat bigImage; |
|
for(int i = 0; i < data.rows; ++i) |
|
{ |
|
bigImage.push_back(data.row(i).reshape(0, columns)); |
|
} |
|
imshow(name, bigImage.t()); |
|
} |
|
|
|
static float calculateAccuracyPercent(const Mat &original, const Mat &predicted) |
|
{ |
|
return 100 * (float)countNonZero(original == predicted) / predicted.rows; |
|
} |
|
|
|
int main() |
|
{ |
|
const String filename = "../data/data01.xml"; |
|
cout << "**********************************************************************" << endl; |
|
cout << filename |
|
<< " contains digits 0 and 1 of 20 samples each, collected on an Android device" << endl; |
|
cout << "Each of the collected images are of size 28 x 28 re-arranged to 1 x 784 matrix" |
|
<< endl; |
|
cout << "**********************************************************************" << endl; |
|
|
|
Mat data, labels; |
|
{ |
|
cout << "loading the dataset..."; |
|
FileStorage f; |
|
if(f.open(filename, FileStorage::READ)) |
|
{ |
|
f["datamat"] >> data; |
|
f["labelsmat"] >> labels; |
|
f.release(); |
|
} |
|
else |
|
{ |
|
cerr << "file can not be opened: " << filename << endl; |
|
return 1; |
|
} |
|
data.convertTo(data, CV_32F); |
|
labels.convertTo(labels, CV_32F); |
|
cout << "read " << data.rows << " rows of data" << endl; |
|
} |
|
|
|
Mat data_train, data_test; |
|
Mat labels_train, labels_test; |
|
for(int i = 0; i < data.rows; i++) |
|
{ |
|
if(i % 2 == 0) |
|
{ |
|
data_train.push_back(data.row(i)); |
|
labels_train.push_back(labels.row(i)); |
|
} |
|
else |
|
{ |
|
data_test.push_back(data.row(i)); |
|
labels_test.push_back(labels.row(i)); |
|
} |
|
} |
|
cout << "training/testing samples count: " << data_train.rows << "/" << data_test.rows << endl; |
|
|
|
// display sample image |
|
showImage(data_train, 28, "train data"); |
|
showImage(data_test, 28, "test data"); |
|
|
|
|
|
// simple case with batch gradient |
|
LogisticRegression::Params params = LogisticRegression::Params( |
|
0.001, 10, LogisticRegression::BATCH, LogisticRegression::REG_L2, 1, 1); |
|
// simple case with mini-batch gradient |
|
// LogisticRegression::Params params = LogisticRegression::Params( |
|
// 0.001, 10, LogisticRegression::MINI_BATCH, LogisticRegression::REG_L2, 1, 1); |
|
|
|
// mini-batch gradient with higher accuracy |
|
// LogisticRegression::Params params = LogisticRegression::Params( |
|
// 0.000001, 10, LogisticRegression::MINI_BATCH, LogisticRegression::REG_L2, 1, 1); |
|
|
|
cout << "training..."; |
|
Ptr<StatModel> lr1 = LogisticRegression::create(params); |
|
lr1->train(data_train, ROW_SAMPLE, labels_train); |
|
cout << "done!" << endl; |
|
|
|
cout << "predicting..."; |
|
Mat responses; |
|
lr1->predict(data_test, responses); |
|
cout << "done!" << endl; |
|
|
|
// show prediction report |
|
cout << "original vs predicted:" << endl; |
|
labels_test.convertTo(labels_test, CV_32S); |
|
cout << labels_test.t() << endl; |
|
cout << responses.t() << endl; |
|
cout << "accuracy: " << calculateAccuracyPercent(labels_test, responses) << "%" << endl; |
|
|
|
// save the classfier |
|
const String saveFilename = "NewLR_Trained.xml"; |
|
cout << "saving the classifier to " << saveFilename << endl; |
|
lr1->save(saveFilename); |
|
|
|
// load the classifier onto new object |
|
cout << "loading a new classifier from " << saveFilename << endl; |
|
Ptr<LogisticRegression> lr2 = StatModel::load<LogisticRegression>(saveFilename); |
|
|
|
// predict using loaded classifier |
|
cout << "predicting the dataset using the loaded classfier..."; |
|
Mat responses2; |
|
lr2->predict(data_test, responses2); |
|
cout << "done!" << endl; |
|
|
|
// calculate accuracy |
|
cout << labels_test.t() << endl; |
|
cout << responses2.t() << endl; |
|
cout << "accuracy: " << calculateAccuracyPercent(labels_test, responses2) << "%" << endl; |
|
|
|
waitKey(0); |
|
return 0; |
|
}
|
|
|