Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

452 lines
12 KiB

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html
#include "precomp.hpp"
#include "stat.hpp"
namespace cv {
CV_CPU_OPTIMIZATION_NAMESPACE_BEGIN
SumFunc getSumFunc(int depth);
#ifndef CV_CPU_OPTIMIZATION_DECLARATIONS_ONLY
template <typename T, typename ST>
struct Sum_SIMD
{
int operator () (const T *, const uchar *, ST *, int, int) const
{
return 0;
}
};
#if CV_SIMD
template <>
struct Sum_SIMD<uchar, int>
{
int operator () (const uchar * src0, const uchar * mask, int * dst, int len, int cn) const
{
if (mask || (cn != 1 && cn != 2 && cn != 4))
return 0;
len *= cn;
int x = 0;
v_uint32 v_sum = vx_setzero_u32();
int len0 = len & -v_uint8::nlanes;
while (x < len0)
{
const int len_tmp = min(x + 256*v_uint16::nlanes, len0);
v_uint16 v_sum16 = vx_setzero_u16();
for (; x < len_tmp; x += v_uint8::nlanes)
{
v_uint16 v_src0, v_src1;
v_expand(vx_load(src0 + x), v_src0, v_src1);
v_sum16 += v_src0 + v_src1;
}
v_uint32 v_half0, v_half1;
v_expand(v_sum16, v_half0, v_half1);
v_sum += v_half0 + v_half1;
}
if (x <= len - v_uint16::nlanes)
{
v_uint32 v_half0, v_half1;
v_expand(vx_load_expand(src0 + x), v_half0, v_half1);
v_sum += v_half0 + v_half1;
x += v_uint16::nlanes;
}
if (x <= len - v_uint32::nlanes)
{
v_sum += vx_load_expand_q(src0 + x);
x += v_uint32::nlanes;
}
if (cn == 1)
*dst += v_reduce_sum(v_sum);
else
{
uint32_t CV_DECL_ALIGNED(CV_SIMD_WIDTH) ar[v_uint32::nlanes];
v_store_aligned(ar, v_sum);
for (int i = 0; i < v_uint32::nlanes; ++i)
dst[i % cn] += ar[i];
}
v_cleanup();
return x / cn;
}
};
template <>
struct Sum_SIMD<schar, int>
{
int operator () (const schar * src0, const uchar * mask, int * dst, int len, int cn) const
{
if (mask || (cn != 1 && cn != 2 && cn != 4))
return 0;
len *= cn;
int x = 0;
v_int32 v_sum = vx_setzero_s32();
int len0 = len & -v_int8::nlanes;
while (x < len0)
{
const int len_tmp = min(x + 256*v_int16::nlanes, len0);
v_int16 v_sum16 = vx_setzero_s16();
for (; x < len_tmp; x += v_int8::nlanes)
{
v_int16 v_src0, v_src1;
v_expand(vx_load(src0 + x), v_src0, v_src1);
v_sum16 += v_src0 + v_src1;
}
v_int32 v_half0, v_half1;
v_expand(v_sum16, v_half0, v_half1);
v_sum += v_half0 + v_half1;
}
if (x <= len - v_int16::nlanes)
{
v_int32 v_half0, v_half1;
v_expand(vx_load_expand(src0 + x), v_half0, v_half1);
v_sum += v_half0 + v_half1;
x += v_int16::nlanes;
}
if (x <= len - v_int32::nlanes)
{
v_sum += vx_load_expand_q(src0 + x);
x += v_int32::nlanes;
}
if (cn == 1)
*dst += v_reduce_sum(v_sum);
else
{
int32_t CV_DECL_ALIGNED(CV_SIMD_WIDTH) ar[v_int32::nlanes];
v_store_aligned(ar, v_sum);
for (int i = 0; i < v_int32::nlanes; ++i)
dst[i % cn] += ar[i];
}
v_cleanup();
return x / cn;
}
};
template <>
struct Sum_SIMD<ushort, int>
{
int operator () (const ushort * src0, const uchar * mask, int * dst, int len, int cn) const
{
if (mask || (cn != 1 && cn != 2 && cn != 4))
return 0;
len *= cn;
int x = 0;
v_uint32 v_sum = vx_setzero_u32();
for (; x <= len - v_uint16::nlanes; x += v_uint16::nlanes)
{
v_uint32 v_src0, v_src1;
v_expand(vx_load(src0 + x), v_src0, v_src1);
v_sum += v_src0 + v_src1;
}
if (x <= len - v_uint32::nlanes)
{
v_sum += vx_load_expand(src0 + x);
x += v_uint32::nlanes;
}
if (cn == 1)
*dst += v_reduce_sum(v_sum);
else
{
uint32_t CV_DECL_ALIGNED(CV_SIMD_WIDTH) ar[v_uint32::nlanes];
v_store_aligned(ar, v_sum);
for (int i = 0; i < v_uint32::nlanes; ++i)
dst[i % cn] += ar[i];
}
v_cleanup();
return x / cn;
}
};
template <>
struct Sum_SIMD<short, int>
{
int operator () (const short * src0, const uchar * mask, int * dst, int len, int cn) const
{
if (mask || (cn != 1 && cn != 2 && cn != 4))
return 0;
len *= cn;
int x = 0;
v_int32 v_sum = vx_setzero_s32();
for (; x <= len - v_int16::nlanes; x += v_int16::nlanes)
{
v_int32 v_src0, v_src1;
v_expand(vx_load(src0 + x), v_src0, v_src1);
v_sum += v_src0 + v_src1;
}
if (x <= len - v_int32::nlanes)
{
v_sum += vx_load_expand(src0 + x);
x += v_int32::nlanes;
}
if (cn == 1)
*dst += v_reduce_sum(v_sum);
else
{
int32_t CV_DECL_ALIGNED(CV_SIMD_WIDTH) ar[v_int32::nlanes];
v_store_aligned(ar, v_sum);
for (int i = 0; i < v_int32::nlanes; ++i)
dst[i % cn] += ar[i];
}
v_cleanup();
return x / cn;
}
};
#if CV_SIMD_64F
template <>
struct Sum_SIMD<int, double>
{
int operator () (const int * src0, const uchar * mask, double * dst, int len, int cn) const
{
if (mask || (cn != 1 && cn != 2 && cn != 4))
return 0;
len *= cn;
int x = 0;
v_float64 v_sum0 = vx_setzero_f64();
v_float64 v_sum1 = vx_setzero_f64();
for (; x <= len - 2 * v_int32::nlanes; x += 2 * v_int32::nlanes)
{
v_int32 v_src0 = vx_load(src0 + x);
v_int32 v_src1 = vx_load(src0 + x + v_int32::nlanes);
v_sum0 += v_cvt_f64(v_src0) + v_cvt_f64(v_src1);
v_sum1 += v_cvt_f64_high(v_src0) + v_cvt_f64_high(v_src1);
}
#if CV_SIMD256 || CV_SIMD512
double CV_DECL_ALIGNED(CV_SIMD_WIDTH) ar[v_float64::nlanes];
v_store_aligned(ar, v_sum0 + v_sum1);
for (int i = 0; i < v_float64::nlanes; ++i)
dst[i % cn] += ar[i];
#else
double CV_DECL_ALIGNED(CV_SIMD_WIDTH) ar[2 * v_float64::nlanes];
v_store_aligned(ar, v_sum0);
v_store_aligned(ar + v_float64::nlanes, v_sum1);
for (int i = 0; i < 2 * v_float64::nlanes; ++i)
dst[i % cn] += ar[i];
#endif
v_cleanup();
return x / cn;
}
};
template <>
struct Sum_SIMD<float, double>
{
int operator () (const float * src0, const uchar * mask, double * dst, int len, int cn) const
{
if (mask || (cn != 1 && cn != 2 && cn != 4))
return 0;
len *= cn;
int x = 0;
v_float64 v_sum0 = vx_setzero_f64();
v_float64 v_sum1 = vx_setzero_f64();
for (; x <= len - 2 * v_float32::nlanes; x += 2 * v_float32::nlanes)
{
v_float32 v_src0 = vx_load(src0 + x);
v_float32 v_src1 = vx_load(src0 + x + v_float32::nlanes);
v_sum0 += v_cvt_f64(v_src0) + v_cvt_f64(v_src1);
v_sum1 += v_cvt_f64_high(v_src0) + v_cvt_f64_high(v_src1);
}
#if CV_SIMD256 || CV_SIMD512
double CV_DECL_ALIGNED(CV_SIMD_WIDTH) ar[v_float64::nlanes];
v_store_aligned(ar, v_sum0 + v_sum1);
for (int i = 0; i < v_float64::nlanes; ++i)
dst[i % cn] += ar[i];
#else
double CV_DECL_ALIGNED(CV_SIMD_WIDTH) ar[2 * v_float64::nlanes];
v_store_aligned(ar, v_sum0);
v_store_aligned(ar + v_float64::nlanes, v_sum1);
for (int i = 0; i < 2 * v_float64::nlanes; ++i)
dst[i % cn] += ar[i];
#endif
v_cleanup();
return x / cn;
}
};
#endif
#endif
template<typename T, typename ST>
static int sum_(const T* src0, const uchar* mask, ST* dst, int len, int cn )
{
const T* src = src0;
if( !mask )
{
Sum_SIMD<T, ST> vop;
int i = vop(src0, mask, dst, len, cn), k = cn % 4;
src += i * cn;
if( k == 1 )
{
ST s0 = dst[0];
#if CV_ENABLE_UNROLLED
for(; i <= len - 4; i += 4, src += cn*4 )
s0 += src[0] + src[cn] + src[cn*2] + src[cn*3];
#endif
for( ; i < len; i++, src += cn )
s0 += src[0];
dst[0] = s0;
}
else if( k == 2 )
{
ST s0 = dst[0], s1 = dst[1];
for( ; i < len; i++, src += cn )
{
s0 += src[0];
s1 += src[1];
}
dst[0] = s0;
dst[1] = s1;
}
else if( k == 3 )
{
ST s0 = dst[0], s1 = dst[1], s2 = dst[2];
for( ; i < len; i++, src += cn )
{
s0 += src[0];
s1 += src[1];
s2 += src[2];
}
dst[0] = s0;
dst[1] = s1;
dst[2] = s2;
}
for( ; k < cn; k += 4 )
{
src = src0 + i*cn + k;
ST s0 = dst[k], s1 = dst[k+1], s2 = dst[k+2], s3 = dst[k+3];
for( ; i < len; i++, src += cn )
{
s0 += src[0]; s1 += src[1];
s2 += src[2]; s3 += src[3];
}
dst[k] = s0;
dst[k+1] = s1;
dst[k+2] = s2;
dst[k+3] = s3;
}
return len;
}
int i, nzm = 0;
if( cn == 1 )
{
ST s = dst[0];
for( i = 0; i < len; i++ )
if( mask[i] )
{
s += src[i];
nzm++;
}
dst[0] = s;
}
else if( cn == 3 )
{
ST s0 = dst[0], s1 = dst[1], s2 = dst[2];
for( i = 0; i < len; i++, src += 3 )
if( mask[i] )
{
s0 += src[0];
s1 += src[1];
s2 += src[2];
nzm++;
}
dst[0] = s0;
dst[1] = s1;
dst[2] = s2;
}
else
{
for( i = 0; i < len; i++, src += cn )
if( mask[i] )
{
int k = 0;
#if CV_ENABLE_UNROLLED
for( ; k <= cn - 4; k += 4 )
{
ST s0, s1;
s0 = dst[k] + src[k];
s1 = dst[k+1] + src[k+1];
dst[k] = s0; dst[k+1] = s1;
s0 = dst[k+2] + src[k+2];
s1 = dst[k+3] + src[k+3];
dst[k+2] = s0; dst[k+3] = s1;
}
#endif
for( ; k < cn; k++ )
dst[k] += src[k];
nzm++;
}
}
return nzm;
}
static int sum8u( const uchar* src, const uchar* mask, int* dst, int len, int cn )
{ CV_INSTRUMENT_REGION(); return sum_(src, mask, dst, len, cn); }
static int sum8s( const schar* src, const uchar* mask, int* dst, int len, int cn )
{ CV_INSTRUMENT_REGION(); return sum_(src, mask, dst, len, cn); }
static int sum16u( const ushort* src, const uchar* mask, int* dst, int len, int cn )
{ CV_INSTRUMENT_REGION(); return sum_(src, mask, dst, len, cn); }
static int sum16s( const short* src, const uchar* mask, int* dst, int len, int cn )
{ CV_INSTRUMENT_REGION(); return sum_(src, mask, dst, len, cn); }
static int sum32s( const int* src, const uchar* mask, double* dst, int len, int cn )
{ CV_INSTRUMENT_REGION(); return sum_(src, mask, dst, len, cn); }
static int sum32f( const float* src, const uchar* mask, double* dst, int len, int cn )
{ CV_INSTRUMENT_REGION(); return sum_(src, mask, dst, len, cn); }
static int sum64f( const double* src, const uchar* mask, double* dst, int len, int cn )
{ CV_INSTRUMENT_REGION(); return sum_(src, mask, dst, len, cn); }
SumFunc getSumFunc(int depth)
{
static SumFunc sumTab[] =
{
(SumFunc)GET_OPTIMIZED(sum8u), (SumFunc)sum8s,
(SumFunc)sum16u, (SumFunc)sum16s,
(SumFunc)sum32s,
(SumFunc)GET_OPTIMIZED(sum32f), (SumFunc)sum64f,
0
};
return sumTab[depth];
}
#endif
CV_CPU_OPTIMIZATION_NAMESPACE_END
} // namespace