mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1251 lines
47 KiB
1251 lines
47 KiB
// This file is part of OpenCV project. |
|
// It is subject to the license terms in the LICENSE file found in the top-level directory |
|
// of this distribution and at http://opencv.org/license.html |
|
|
|
|
|
#include "precomp.hpp" |
|
#include "opencl_kernels_core.hpp" |
|
#include "stat.hpp" |
|
|
|
/****************************************************************************************\ |
|
* norm * |
|
\****************************************************************************************/ |
|
|
|
namespace cv { namespace hal { |
|
|
|
extern const uchar popCountTable[256] = |
|
{ |
|
0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, |
|
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, |
|
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, |
|
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, |
|
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, |
|
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, |
|
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, |
|
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8 |
|
}; |
|
|
|
static const uchar popCountTable2[] = |
|
{ |
|
0, 1, 1, 1, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, |
|
1, 2, 2, 2, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 1, 2, 2, 2, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, |
|
1, 2, 2, 2, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, |
|
2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, 2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, |
|
1, 2, 2, 2, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, |
|
2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, 2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, |
|
1, 2, 2, 2, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, |
|
2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, 2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4 |
|
}; |
|
|
|
static const uchar popCountTable4[] = |
|
{ |
|
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, |
|
1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, |
|
1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, |
|
1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, |
|
1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, |
|
1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, |
|
1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, |
|
1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 |
|
}; |
|
|
|
|
|
int normHamming(const uchar* a, int n, int cellSize) |
|
{ |
|
if( cellSize == 1 ) |
|
return normHamming(a, n); |
|
const uchar* tab = 0; |
|
if( cellSize == 2 ) |
|
tab = popCountTable2; |
|
else if( cellSize == 4 ) |
|
tab = popCountTable4; |
|
else |
|
return -1; |
|
int i = 0; |
|
int result = 0; |
|
#if CV_SIMD |
|
v_uint64 t = vx_setzero_u64(); |
|
if ( cellSize == 2) |
|
{ |
|
v_uint16 mask = v_reinterpret_as_u16(vx_setall_u8(0x55)); |
|
for(; i <= n - v_uint8::nlanes; i += v_uint8::nlanes) |
|
{ |
|
v_uint16 a0 = v_reinterpret_as_u16(vx_load(a + i)); |
|
t += v_popcount(v_reinterpret_as_u64((a0 | (a0 >> 1)) & mask)); |
|
} |
|
} |
|
else // cellSize == 4 |
|
{ |
|
v_uint16 mask = v_reinterpret_as_u16(vx_setall_u8(0x11)); |
|
for(; i <= n - v_uint8::nlanes; i += v_uint8::nlanes) |
|
{ |
|
v_uint16 a0 = v_reinterpret_as_u16(vx_load(a + i)); |
|
v_uint16 a1 = a0 | (a0 >> 2); |
|
t += v_popcount(v_reinterpret_as_u64((a1 | (a1 >> 1)) & mask)); |
|
|
|
} |
|
} |
|
result += (int)v_reduce_sum(t); |
|
vx_cleanup(); |
|
#elif CV_ENABLE_UNROLLED |
|
for( ; i <= n - 4; i += 4 ) |
|
result += tab[a[i]] + tab[a[i+1]] + tab[a[i+2]] + tab[a[i+3]]; |
|
#endif |
|
for( ; i < n; i++ ) |
|
result += tab[a[i]]; |
|
return result; |
|
} |
|
|
|
int normHamming(const uchar* a, const uchar* b, int n, int cellSize) |
|
{ |
|
if( cellSize == 1 ) |
|
return normHamming(a, b, n); |
|
const uchar* tab = 0; |
|
if( cellSize == 2 ) |
|
tab = popCountTable2; |
|
else if( cellSize == 4 ) |
|
tab = popCountTable4; |
|
else |
|
return -1; |
|
int i = 0; |
|
int result = 0; |
|
#if CV_SIMD |
|
v_uint64 t = vx_setzero_u64(); |
|
if ( cellSize == 2) |
|
{ |
|
v_uint16 mask = v_reinterpret_as_u16(vx_setall_u8(0x55)); |
|
for(; i <= n - v_uint8::nlanes; i += v_uint8::nlanes) |
|
{ |
|
v_uint16 ab0 = v_reinterpret_as_u16(vx_load(a + i) ^ vx_load(b + i)); |
|
t += v_popcount(v_reinterpret_as_u64((ab0 | (ab0 >> 1)) & mask)); |
|
} |
|
} |
|
else // cellSize == 4 |
|
{ |
|
v_uint16 mask = v_reinterpret_as_u16(vx_setall_u8(0x11)); |
|
for(; i <= n - v_uint8::nlanes; i += v_uint8::nlanes) |
|
{ |
|
v_uint16 ab0 = v_reinterpret_as_u16(vx_load(a + i) ^ vx_load(b + i)); |
|
v_uint16 ab1 = ab0 | (ab0 >> 2); |
|
t += v_popcount(v_reinterpret_as_u64((ab1 | (ab1 >> 1)) & mask)); |
|
} |
|
} |
|
result += (int)v_reduce_sum(t); |
|
vx_cleanup(); |
|
#elif CV_ENABLE_UNROLLED |
|
for( ; i <= n - 4; i += 4 ) |
|
result += tab[a[i] ^ b[i]] + tab[a[i+1] ^ b[i+1]] + |
|
tab[a[i+2] ^ b[i+2]] + tab[a[i+3] ^ b[i+3]]; |
|
#endif |
|
for( ; i < n; i++ ) |
|
result += tab[a[i] ^ b[i]]; |
|
return result; |
|
} |
|
|
|
float normL2Sqr_(const float* a, const float* b, int n) |
|
{ |
|
int j = 0; float d = 0.f; |
|
#if CV_SIMD |
|
v_float32 v_d0 = vx_setzero_f32(), v_d1 = vx_setzero_f32(); |
|
v_float32 v_d2 = vx_setzero_f32(), v_d3 = vx_setzero_f32(); |
|
for (; j <= n - 4 * v_float32::nlanes; j += 4 * v_float32::nlanes) |
|
{ |
|
v_float32 t0 = vx_load(a + j) - vx_load(b + j); |
|
v_float32 t1 = vx_load(a + j + v_float32::nlanes) - vx_load(b + j + v_float32::nlanes); |
|
v_float32 t2 = vx_load(a + j + 2 * v_float32::nlanes) - vx_load(b + j + 2 * v_float32::nlanes); |
|
v_float32 t3 = vx_load(a + j + 3 * v_float32::nlanes) - vx_load(b + j + 3 * v_float32::nlanes); |
|
v_d0 = v_muladd(t0, t0, v_d0); |
|
v_d1 = v_muladd(t1, t1, v_d1); |
|
v_d2 = v_muladd(t2, t2, v_d2); |
|
v_d3 = v_muladd(t3, t3, v_d3); |
|
} |
|
d = v_reduce_sum(v_d0 + v_d1 + v_d2 + v_d3); |
|
#endif |
|
for( ; j < n; j++ ) |
|
{ |
|
float t = a[j] - b[j]; |
|
d += t*t; |
|
} |
|
return d; |
|
} |
|
|
|
|
|
float normL1_(const float* a, const float* b, int n) |
|
{ |
|
int j = 0; float d = 0.f; |
|
#if CV_SIMD |
|
v_float32 v_d0 = vx_setzero_f32(), v_d1 = vx_setzero_f32(); |
|
v_float32 v_d2 = vx_setzero_f32(), v_d3 = vx_setzero_f32(); |
|
for (; j <= n - 4 * v_float32::nlanes; j += 4 * v_float32::nlanes) |
|
{ |
|
v_d0 += v_absdiff(vx_load(a + j), vx_load(b + j)); |
|
v_d1 += v_absdiff(vx_load(a + j + v_float32::nlanes), vx_load(b + j + v_float32::nlanes)); |
|
v_d2 += v_absdiff(vx_load(a + j + 2 * v_float32::nlanes), vx_load(b + j + 2 * v_float32::nlanes)); |
|
v_d3 += v_absdiff(vx_load(a + j + 3 * v_float32::nlanes), vx_load(b + j + 3 * v_float32::nlanes)); |
|
} |
|
d = v_reduce_sum(v_d0 + v_d1 + v_d2 + v_d3); |
|
#endif |
|
for( ; j < n; j++ ) |
|
d += std::abs(a[j] - b[j]); |
|
return d; |
|
} |
|
|
|
int normL1_(const uchar* a, const uchar* b, int n) |
|
{ |
|
int j = 0, d = 0; |
|
#if CV_SIMD |
|
for (; j <= n - 4 * v_uint8::nlanes; j += 4 * v_uint8::nlanes) |
|
d += v_reduce_sad(vx_load(a + j), vx_load(b + j)) + |
|
v_reduce_sad(vx_load(a + j + v_uint8::nlanes), vx_load(b + j + v_uint8::nlanes)) + |
|
v_reduce_sad(vx_load(a + j + 2 * v_uint8::nlanes), vx_load(b + j + 2 * v_uint8::nlanes)) + |
|
v_reduce_sad(vx_load(a + j + 3 * v_uint8::nlanes), vx_load(b + j + 3 * v_uint8::nlanes)); |
|
#endif |
|
for( ; j < n; j++ ) |
|
d += std::abs(a[j] - b[j]); |
|
return d; |
|
} |
|
|
|
}} //cv::hal |
|
|
|
//================================================================================================== |
|
|
|
namespace cv |
|
{ |
|
|
|
template<typename T, typename ST> int |
|
normInf_(const T* src, const uchar* mask, ST* _result, int len, int cn) |
|
{ |
|
ST result = *_result; |
|
if( !mask ) |
|
{ |
|
result = std::max(result, normInf<T, ST>(src, len*cn)); |
|
} |
|
else |
|
{ |
|
for( int i = 0; i < len; i++, src += cn ) |
|
if( mask[i] ) |
|
{ |
|
for( int k = 0; k < cn; k++ ) |
|
result = std::max(result, ST(cv_abs(src[k]))); |
|
} |
|
} |
|
*_result = result; |
|
return 0; |
|
} |
|
|
|
template<typename T, typename ST> int |
|
normL1_(const T* src, const uchar* mask, ST* _result, int len, int cn) |
|
{ |
|
ST result = *_result; |
|
if( !mask ) |
|
{ |
|
result += normL1<T, ST>(src, len*cn); |
|
} |
|
else |
|
{ |
|
for( int i = 0; i < len; i++, src += cn ) |
|
if( mask[i] ) |
|
{ |
|
for( int k = 0; k < cn; k++ ) |
|
result += cv_abs(src[k]); |
|
} |
|
} |
|
*_result = result; |
|
return 0; |
|
} |
|
|
|
template<typename T, typename ST> int |
|
normL2_(const T* src, const uchar* mask, ST* _result, int len, int cn) |
|
{ |
|
ST result = *_result; |
|
if( !mask ) |
|
{ |
|
result += normL2Sqr<T, ST>(src, len*cn); |
|
} |
|
else |
|
{ |
|
for( int i = 0; i < len; i++, src += cn ) |
|
if( mask[i] ) |
|
{ |
|
for( int k = 0; k < cn; k++ ) |
|
{ |
|
T v = src[k]; |
|
result += (ST)v*v; |
|
} |
|
} |
|
} |
|
*_result = result; |
|
return 0; |
|
} |
|
|
|
template<typename T, typename ST> int |
|
normDiffInf_(const T* src1, const T* src2, const uchar* mask, ST* _result, int len, int cn) |
|
{ |
|
ST result = *_result; |
|
if( !mask ) |
|
{ |
|
result = std::max(result, normInf<T, ST>(src1, src2, len*cn)); |
|
} |
|
else |
|
{ |
|
for( int i = 0; i < len; i++, src1 += cn, src2 += cn ) |
|
if( mask[i] ) |
|
{ |
|
for( int k = 0; k < cn; k++ ) |
|
result = std::max(result, (ST)std::abs(src1[k] - src2[k])); |
|
} |
|
} |
|
*_result = result; |
|
return 0; |
|
} |
|
|
|
template<typename T, typename ST> int |
|
normDiffL1_(const T* src1, const T* src2, const uchar* mask, ST* _result, int len, int cn) |
|
{ |
|
ST result = *_result; |
|
if( !mask ) |
|
{ |
|
result += normL1<T, ST>(src1, src2, len*cn); |
|
} |
|
else |
|
{ |
|
for( int i = 0; i < len; i++, src1 += cn, src2 += cn ) |
|
if( mask[i] ) |
|
{ |
|
for( int k = 0; k < cn; k++ ) |
|
result += std::abs(src1[k] - src2[k]); |
|
} |
|
} |
|
*_result = result; |
|
return 0; |
|
} |
|
|
|
template<typename T, typename ST> int |
|
normDiffL2_(const T* src1, const T* src2, const uchar* mask, ST* _result, int len, int cn) |
|
{ |
|
ST result = *_result; |
|
if( !mask ) |
|
{ |
|
result += normL2Sqr<T, ST>(src1, src2, len*cn); |
|
} |
|
else |
|
{ |
|
for( int i = 0; i < len; i++, src1 += cn, src2 += cn ) |
|
if( mask[i] ) |
|
{ |
|
for( int k = 0; k < cn; k++ ) |
|
{ |
|
ST v = src1[k] - src2[k]; |
|
result += v*v; |
|
} |
|
} |
|
} |
|
*_result = result; |
|
return 0; |
|
} |
|
|
|
#define CV_DEF_NORM_FUNC(L, suffix, type, ntype) \ |
|
static int norm##L##_##suffix(const type* src, const uchar* mask, ntype* r, int len, int cn) \ |
|
{ return norm##L##_(src, mask, r, len, cn); } \ |
|
static int normDiff##L##_##suffix(const type* src1, const type* src2, \ |
|
const uchar* mask, ntype* r, int len, int cn) \ |
|
{ return normDiff##L##_(src1, src2, mask, r, (int)len, cn); } |
|
|
|
#define CV_DEF_NORM_ALL(suffix, type, inftype, l1type, l2type) \ |
|
CV_DEF_NORM_FUNC(Inf, suffix, type, inftype) \ |
|
CV_DEF_NORM_FUNC(L1, suffix, type, l1type) \ |
|
CV_DEF_NORM_FUNC(L2, suffix, type, l2type) |
|
|
|
CV_DEF_NORM_ALL(8u, uchar, int, int, int) |
|
CV_DEF_NORM_ALL(8s, schar, int, int, int) |
|
CV_DEF_NORM_ALL(16u, ushort, int, int, double) |
|
CV_DEF_NORM_ALL(16s, short, int, int, double) |
|
CV_DEF_NORM_ALL(32s, int, int, double, double) |
|
CV_DEF_NORM_ALL(32f, float, float, double, double) |
|
CV_DEF_NORM_ALL(64f, double, double, double, double) |
|
|
|
|
|
typedef int (*NormFunc)(const uchar*, const uchar*, uchar*, int, int); |
|
typedef int (*NormDiffFunc)(const uchar*, const uchar*, const uchar*, uchar*, int, int); |
|
|
|
static NormFunc getNormFunc(int normType, int depth) |
|
{ |
|
static NormFunc normTab[3][8] = |
|
{ |
|
{ |
|
(NormFunc)GET_OPTIMIZED(normInf_8u), (NormFunc)GET_OPTIMIZED(normInf_8s), (NormFunc)GET_OPTIMIZED(normInf_16u), (NormFunc)GET_OPTIMIZED(normInf_16s), |
|
(NormFunc)GET_OPTIMIZED(normInf_32s), (NormFunc)GET_OPTIMIZED(normInf_32f), (NormFunc)normInf_64f, 0 |
|
}, |
|
{ |
|
(NormFunc)GET_OPTIMIZED(normL1_8u), (NormFunc)GET_OPTIMIZED(normL1_8s), (NormFunc)GET_OPTIMIZED(normL1_16u), (NormFunc)GET_OPTIMIZED(normL1_16s), |
|
(NormFunc)GET_OPTIMIZED(normL1_32s), (NormFunc)GET_OPTIMIZED(normL1_32f), (NormFunc)normL1_64f, 0 |
|
}, |
|
{ |
|
(NormFunc)GET_OPTIMIZED(normL2_8u), (NormFunc)GET_OPTIMIZED(normL2_8s), (NormFunc)GET_OPTIMIZED(normL2_16u), (NormFunc)GET_OPTIMIZED(normL2_16s), |
|
(NormFunc)GET_OPTIMIZED(normL2_32s), (NormFunc)GET_OPTIMIZED(normL2_32f), (NormFunc)normL2_64f, 0 |
|
} |
|
}; |
|
|
|
return normTab[normType][depth]; |
|
} |
|
|
|
static NormDiffFunc getNormDiffFunc(int normType, int depth) |
|
{ |
|
static NormDiffFunc normDiffTab[3][8] = |
|
{ |
|
{ |
|
(NormDiffFunc)GET_OPTIMIZED(normDiffInf_8u), (NormDiffFunc)normDiffInf_8s, |
|
(NormDiffFunc)normDiffInf_16u, (NormDiffFunc)normDiffInf_16s, |
|
(NormDiffFunc)normDiffInf_32s, (NormDiffFunc)GET_OPTIMIZED(normDiffInf_32f), |
|
(NormDiffFunc)normDiffInf_64f, 0 |
|
}, |
|
{ |
|
(NormDiffFunc)GET_OPTIMIZED(normDiffL1_8u), (NormDiffFunc)normDiffL1_8s, |
|
(NormDiffFunc)normDiffL1_16u, (NormDiffFunc)normDiffL1_16s, |
|
(NormDiffFunc)normDiffL1_32s, (NormDiffFunc)GET_OPTIMIZED(normDiffL1_32f), |
|
(NormDiffFunc)normDiffL1_64f, 0 |
|
}, |
|
{ |
|
(NormDiffFunc)GET_OPTIMIZED(normDiffL2_8u), (NormDiffFunc)normDiffL2_8s, |
|
(NormDiffFunc)normDiffL2_16u, (NormDiffFunc)normDiffL2_16s, |
|
(NormDiffFunc)normDiffL2_32s, (NormDiffFunc)GET_OPTIMIZED(normDiffL2_32f), |
|
(NormDiffFunc)normDiffL2_64f, 0 |
|
} |
|
}; |
|
|
|
return normDiffTab[normType][depth]; |
|
} |
|
|
|
#ifdef HAVE_OPENCL |
|
|
|
static bool ocl_norm( InputArray _src, int normType, InputArray _mask, double & result ) |
|
{ |
|
const ocl::Device & d = ocl::Device::getDefault(); |
|
|
|
#ifdef __ANDROID__ |
|
if (d.isNVidia()) |
|
return false; |
|
#endif |
|
const int cn = _src.channels(); |
|
if (cn > 4) |
|
return false; |
|
int type = _src.type(), depth = CV_MAT_DEPTH(type); |
|
bool doubleSupport = d.doubleFPConfig() > 0, |
|
haveMask = _mask.kind() != _InputArray::NONE; |
|
|
|
if ( !(normType == NORM_INF || normType == NORM_L1 || normType == NORM_L2 || normType == NORM_L2SQR) || |
|
(!doubleSupport && depth == CV_64F)) |
|
return false; |
|
|
|
UMat src = _src.getUMat(); |
|
|
|
if (normType == NORM_INF) |
|
{ |
|
if (!ocl_minMaxIdx(_src, NULL, &result, NULL, NULL, _mask, |
|
std::max(depth, CV_32S), depth != CV_8U && depth != CV_16U)) |
|
return false; |
|
} |
|
else if (normType == NORM_L1 || normType == NORM_L2 || normType == NORM_L2SQR) |
|
{ |
|
Scalar sc; |
|
bool unstype = depth == CV_8U || depth == CV_16U; |
|
|
|
if ( !ocl_sum(haveMask ? src : src.reshape(1), sc, normType == NORM_L2 || normType == NORM_L2SQR ? |
|
OCL_OP_SUM_SQR : (unstype ? OCL_OP_SUM : OCL_OP_SUM_ABS), _mask) ) |
|
return false; |
|
|
|
double s = 0.0; |
|
for (int i = 0; i < (haveMask ? cn : 1); ++i) |
|
s += sc[i]; |
|
|
|
result = normType == NORM_L1 || normType == NORM_L2SQR ? s : std::sqrt(s); |
|
} |
|
|
|
return true; |
|
} |
|
|
|
#endif |
|
|
|
#ifdef HAVE_IPP |
|
static bool ipp_norm(Mat &src, int normType, Mat &mask, double &result) |
|
{ |
|
CV_INSTRUMENT_REGION_IPP(); |
|
|
|
#if IPP_VERSION_X100 >= 700 |
|
size_t total_size = src.total(); |
|
int rows = src.size[0], cols = rows ? (int)(total_size/rows) : 0; |
|
|
|
if( (src.dims == 2 || (src.isContinuous() && mask.isContinuous())) |
|
&& cols > 0 && (size_t)rows*cols == total_size ) |
|
{ |
|
if( !mask.empty() ) |
|
{ |
|
IppiSize sz = { cols, rows }; |
|
int type = src.type(); |
|
|
|
typedef IppStatus (CV_STDCALL* ippiMaskNormFuncC1)(const void *, int, const void *, int, IppiSize, Ipp64f *); |
|
ippiMaskNormFuncC1 ippiNorm_C1MR = |
|
normType == NORM_INF ? |
|
(type == CV_8UC1 ? (ippiMaskNormFuncC1)ippiNorm_Inf_8u_C1MR : |
|
type == CV_16UC1 ? (ippiMaskNormFuncC1)ippiNorm_Inf_16u_C1MR : |
|
type == CV_32FC1 ? (ippiMaskNormFuncC1)ippiNorm_Inf_32f_C1MR : |
|
0) : |
|
normType == NORM_L1 ? |
|
(type == CV_8UC1 ? (ippiMaskNormFuncC1)ippiNorm_L1_8u_C1MR : |
|
type == CV_16UC1 ? (ippiMaskNormFuncC1)ippiNorm_L1_16u_C1MR : |
|
type == CV_32FC1 ? (ippiMaskNormFuncC1)ippiNorm_L1_32f_C1MR : |
|
0) : |
|
normType == NORM_L2 || normType == NORM_L2SQR ? |
|
(type == CV_8UC1 ? (ippiMaskNormFuncC1)ippiNorm_L2_8u_C1MR : |
|
type == CV_16UC1 ? (ippiMaskNormFuncC1)ippiNorm_L2_16u_C1MR : |
|
type == CV_32FC1 ? (ippiMaskNormFuncC1)ippiNorm_L2_32f_C1MR : |
|
0) : 0; |
|
if( ippiNorm_C1MR ) |
|
{ |
|
Ipp64f norm; |
|
if( CV_INSTRUMENT_FUN_IPP(ippiNorm_C1MR, src.ptr(), (int)src.step[0], mask.ptr(), (int)mask.step[0], sz, &norm) >= 0 ) |
|
{ |
|
result = (normType == NORM_L2SQR ? (double)(norm * norm) : (double)norm); |
|
return true; |
|
} |
|
} |
|
typedef IppStatus (CV_STDCALL* ippiMaskNormFuncC3)(const void *, int, const void *, int, IppiSize, int, Ipp64f *); |
|
ippiMaskNormFuncC3 ippiNorm_C3CMR = |
|
normType == NORM_INF ? |
|
(type == CV_8UC3 ? (ippiMaskNormFuncC3)ippiNorm_Inf_8u_C3CMR : |
|
type == CV_16UC3 ? (ippiMaskNormFuncC3)ippiNorm_Inf_16u_C3CMR : |
|
type == CV_32FC3 ? (ippiMaskNormFuncC3)ippiNorm_Inf_32f_C3CMR : |
|
0) : |
|
normType == NORM_L1 ? |
|
(type == CV_8UC3 ? (ippiMaskNormFuncC3)ippiNorm_L1_8u_C3CMR : |
|
type == CV_16UC3 ? (ippiMaskNormFuncC3)ippiNorm_L1_16u_C3CMR : |
|
type == CV_32FC3 ? (ippiMaskNormFuncC3)ippiNorm_L1_32f_C3CMR : |
|
0) : |
|
normType == NORM_L2 || normType == NORM_L2SQR ? |
|
(type == CV_8UC3 ? (ippiMaskNormFuncC3)ippiNorm_L2_8u_C3CMR : |
|
type == CV_16UC3 ? (ippiMaskNormFuncC3)ippiNorm_L2_16u_C3CMR : |
|
type == CV_32FC3 ? (ippiMaskNormFuncC3)ippiNorm_L2_32f_C3CMR : |
|
0) : 0; |
|
if( ippiNorm_C3CMR ) |
|
{ |
|
Ipp64f norm1, norm2, norm3; |
|
if( CV_INSTRUMENT_FUN_IPP(ippiNorm_C3CMR, src.data, (int)src.step[0], mask.data, (int)mask.step[0], sz, 1, &norm1) >= 0 && |
|
CV_INSTRUMENT_FUN_IPP(ippiNorm_C3CMR, src.data, (int)src.step[0], mask.data, (int)mask.step[0], sz, 2, &norm2) >= 0 && |
|
CV_INSTRUMENT_FUN_IPP(ippiNorm_C3CMR, src.data, (int)src.step[0], mask.data, (int)mask.step[0], sz, 3, &norm3) >= 0) |
|
{ |
|
Ipp64f norm = |
|
normType == NORM_INF ? std::max(std::max(norm1, norm2), norm3) : |
|
normType == NORM_L1 ? norm1 + norm2 + norm3 : |
|
normType == NORM_L2 || normType == NORM_L2SQR ? std::sqrt(norm1 * norm1 + norm2 * norm2 + norm3 * norm3) : |
|
0; |
|
result = (normType == NORM_L2SQR ? (double)(norm * norm) : (double)norm); |
|
return true; |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
IppiSize sz = { cols*src.channels(), rows }; |
|
int type = src.depth(); |
|
|
|
typedef IppStatus (CV_STDCALL* ippiNormFuncHint)(const void *, int, IppiSize, Ipp64f *, IppHintAlgorithm hint); |
|
typedef IppStatus (CV_STDCALL* ippiNormFuncNoHint)(const void *, int, IppiSize, Ipp64f *); |
|
ippiNormFuncHint ippiNormHint = |
|
normType == NORM_L1 ? |
|
(type == CV_32FC1 ? (ippiNormFuncHint)ippiNorm_L1_32f_C1R : |
|
0) : |
|
normType == NORM_L2 || normType == NORM_L2SQR ? |
|
(type == CV_32FC1 ? (ippiNormFuncHint)ippiNorm_L2_32f_C1R : |
|
0) : 0; |
|
ippiNormFuncNoHint ippiNorm = |
|
normType == NORM_INF ? |
|
(type == CV_8UC1 ? (ippiNormFuncNoHint)ippiNorm_Inf_8u_C1R : |
|
type == CV_16UC1 ? (ippiNormFuncNoHint)ippiNorm_Inf_16u_C1R : |
|
type == CV_16SC1 ? (ippiNormFuncNoHint)ippiNorm_Inf_16s_C1R : |
|
type == CV_32FC1 ? (ippiNormFuncNoHint)ippiNorm_Inf_32f_C1R : |
|
0) : |
|
normType == NORM_L1 ? |
|
(type == CV_8UC1 ? (ippiNormFuncNoHint)ippiNorm_L1_8u_C1R : |
|
type == CV_16UC1 ? (ippiNormFuncNoHint)ippiNorm_L1_16u_C1R : |
|
type == CV_16SC1 ? (ippiNormFuncNoHint)ippiNorm_L1_16s_C1R : |
|
0) : |
|
normType == NORM_L2 || normType == NORM_L2SQR ? |
|
(type == CV_8UC1 ? (ippiNormFuncNoHint)ippiNorm_L2_8u_C1R : |
|
type == CV_16UC1 ? (ippiNormFuncNoHint)ippiNorm_L2_16u_C1R : |
|
type == CV_16SC1 ? (ippiNormFuncNoHint)ippiNorm_L2_16s_C1R : |
|
0) : 0; |
|
if( ippiNormHint || ippiNorm ) |
|
{ |
|
Ipp64f norm; |
|
IppStatus ret = ippiNormHint ? CV_INSTRUMENT_FUN_IPP(ippiNormHint, src.ptr(), (int)src.step[0], sz, &norm, ippAlgHintAccurate) : |
|
CV_INSTRUMENT_FUN_IPP(ippiNorm, src.ptr(), (int)src.step[0], sz, &norm); |
|
if( ret >= 0 ) |
|
{ |
|
result = (normType == NORM_L2SQR) ? norm * norm : norm; |
|
return true; |
|
} |
|
} |
|
} |
|
} |
|
#else |
|
CV_UNUSED(src); CV_UNUSED(normType); CV_UNUSED(mask); CV_UNUSED(result); |
|
#endif |
|
return false; |
|
} |
|
#endif |
|
|
|
} // cv:: |
|
|
|
double cv::norm( InputArray _src, int normType, InputArray _mask ) |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
|
|
normType &= NORM_TYPE_MASK; |
|
CV_Assert( normType == NORM_INF || normType == NORM_L1 || |
|
normType == NORM_L2 || normType == NORM_L2SQR || |
|
((normType == NORM_HAMMING || normType == NORM_HAMMING2) && _src.type() == CV_8U) ); |
|
|
|
#if defined HAVE_OPENCL || defined HAVE_IPP |
|
double _result = 0; |
|
#endif |
|
|
|
#ifdef HAVE_OPENCL |
|
CV_OCL_RUN_(OCL_PERFORMANCE_CHECK(_src.isUMat()) && _src.dims() <= 2, |
|
ocl_norm(_src, normType, _mask, _result), |
|
_result) |
|
#endif |
|
|
|
Mat src = _src.getMat(), mask = _mask.getMat(); |
|
CV_IPP_RUN(IPP_VERSION_X100 >= 700, ipp_norm(src, normType, mask, _result), _result); |
|
|
|
int depth = src.depth(), cn = src.channels(); |
|
if( src.isContinuous() && mask.empty() ) |
|
{ |
|
size_t len = src.total()*cn; |
|
if( len == (size_t)(int)len ) |
|
{ |
|
if( depth == CV_32F ) |
|
{ |
|
const float* data = src.ptr<float>(); |
|
|
|
if( normType == NORM_L2 ) |
|
{ |
|
double result = 0; |
|
GET_OPTIMIZED(normL2_32f)(data, 0, &result, (int)len, 1); |
|
return std::sqrt(result); |
|
} |
|
if( normType == NORM_L2SQR ) |
|
{ |
|
double result = 0; |
|
GET_OPTIMIZED(normL2_32f)(data, 0, &result, (int)len, 1); |
|
return result; |
|
} |
|
if( normType == NORM_L1 ) |
|
{ |
|
double result = 0; |
|
GET_OPTIMIZED(normL1_32f)(data, 0, &result, (int)len, 1); |
|
return result; |
|
} |
|
if( normType == NORM_INF ) |
|
{ |
|
float result = 0; |
|
GET_OPTIMIZED(normInf_32f)(data, 0, &result, (int)len, 1); |
|
return result; |
|
} |
|
} |
|
if( depth == CV_8U ) |
|
{ |
|
const uchar* data = src.ptr<uchar>(); |
|
|
|
if( normType == NORM_HAMMING ) |
|
{ |
|
return hal::normHamming(data, (int)len); |
|
} |
|
|
|
if( normType == NORM_HAMMING2 ) |
|
{ |
|
return hal::normHamming(data, (int)len, 2); |
|
} |
|
} |
|
} |
|
} |
|
|
|
CV_Assert( mask.empty() || mask.type() == CV_8U ); |
|
|
|
if( normType == NORM_HAMMING || normType == NORM_HAMMING2 ) |
|
{ |
|
if( !mask.empty() ) |
|
{ |
|
Mat temp; |
|
bitwise_and(src, mask, temp); |
|
return norm(temp, normType); |
|
} |
|
int cellSize = normType == NORM_HAMMING ? 1 : 2; |
|
|
|
const Mat* arrays[] = {&src, 0}; |
|
uchar* ptrs[1] = {}; |
|
NAryMatIterator it(arrays, ptrs); |
|
int total = (int)it.size; |
|
int result = 0; |
|
|
|
for( size_t i = 0; i < it.nplanes; i++, ++it ) |
|
{ |
|
result += hal::normHamming(ptrs[0], total, cellSize); |
|
} |
|
|
|
return result; |
|
} |
|
|
|
NormFunc func = getNormFunc(normType >> 1, depth); |
|
CV_Assert( func != 0 ); |
|
|
|
const Mat* arrays[] = {&src, &mask, 0}; |
|
uchar* ptrs[2] = {}; |
|
union |
|
{ |
|
double d; |
|
int i; |
|
float f; |
|
} |
|
result; |
|
result.d = 0; |
|
NAryMatIterator it(arrays, ptrs); |
|
CV_CheckLT((size_t)it.size, (size_t)INT_MAX, ""); |
|
|
|
if ((normType == NORM_L1 && depth <= CV_16S) || |
|
((normType == NORM_L2 || normType == NORM_L2SQR) && depth <= CV_8S)) |
|
{ |
|
// special case to handle "integer" overflow in accumulator |
|
const size_t esz = src.elemSize(); |
|
const int total = (int)it.size; |
|
const int intSumBlockSize = (normType == NORM_L1 && depth <= CV_8S ? (1 << 23) : (1 << 15))/cn; |
|
const int blockSize = std::min(total, intSumBlockSize); |
|
int isum = 0; |
|
int count = 0; |
|
|
|
for (size_t i = 0; i < it.nplanes; i++, ++it) |
|
{ |
|
for (int j = 0; j < total; j += blockSize) |
|
{ |
|
int bsz = std::min(total - j, blockSize); |
|
func(ptrs[0], ptrs[1], (uchar*)&isum, bsz, cn); |
|
count += bsz; |
|
if (count + blockSize >= intSumBlockSize || (i+1 >= it.nplanes && j+bsz >= total)) |
|
{ |
|
result.d += isum; |
|
isum = 0; |
|
count = 0; |
|
} |
|
ptrs[0] += bsz*esz; |
|
if (ptrs[1]) |
|
ptrs[1] += bsz; |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
// generic implementation |
|
for (size_t i = 0; i < it.nplanes; i++, ++it) |
|
{ |
|
func(ptrs[0], ptrs[1], (uchar*)&result, (int)it.size, cn); |
|
} |
|
} |
|
|
|
if( normType == NORM_INF ) |
|
{ |
|
if( depth == CV_64F ) |
|
return result.d; |
|
else if( depth == CV_32F ) |
|
return result.f; |
|
else |
|
return result.i; |
|
} |
|
else if( normType == NORM_L2 ) |
|
return std::sqrt(result.d); |
|
|
|
return result.d; |
|
} |
|
|
|
//================================================================================================== |
|
|
|
#ifdef HAVE_OPENCL |
|
|
|
namespace cv { |
|
|
|
static bool ocl_norm( InputArray _src1, InputArray _src2, int normType, InputArray _mask, double & result ) |
|
{ |
|
#ifdef __ANDROID__ |
|
if (ocl::Device::getDefault().isNVidia()) |
|
return false; |
|
#endif |
|
|
|
Scalar sc1, sc2; |
|
int cn = _src1.channels(); |
|
if (cn > 4) |
|
return false; |
|
int type = _src1.type(), depth = CV_MAT_DEPTH(type); |
|
bool relative = (normType & NORM_RELATIVE) != 0; |
|
normType &= ~NORM_RELATIVE; |
|
bool normsum = normType == NORM_L1 || normType == NORM_L2 || normType == NORM_L2SQR; |
|
|
|
#ifdef __APPLE__ |
|
if(normType == NORM_L1 && type == CV_16UC3 && !_mask.empty()) |
|
return false; |
|
#endif |
|
|
|
if (normsum) |
|
{ |
|
if (!ocl_sum(_src1, sc1, normType == NORM_L2 || normType == NORM_L2SQR ? |
|
OCL_OP_SUM_SQR : OCL_OP_SUM, _mask, _src2, relative, sc2)) |
|
return false; |
|
} |
|
else |
|
{ |
|
if (!ocl_minMaxIdx(_src1, NULL, &sc1[0], NULL, NULL, _mask, std::max(CV_32S, depth), |
|
false, _src2, relative ? &sc2[0] : NULL)) |
|
return false; |
|
cn = 1; |
|
} |
|
|
|
double s2 = 0; |
|
for (int i = 0; i < cn; ++i) |
|
{ |
|
result += sc1[i]; |
|
if (relative) |
|
s2 += sc2[i]; |
|
} |
|
|
|
if (normType == NORM_L2) |
|
{ |
|
result = std::sqrt(result); |
|
if (relative) |
|
s2 = std::sqrt(s2); |
|
} |
|
|
|
if (relative) |
|
result /= (s2 + DBL_EPSILON); |
|
|
|
return true; |
|
} |
|
|
|
} |
|
|
|
#endif |
|
|
|
#ifdef HAVE_IPP |
|
namespace cv |
|
{ |
|
static bool ipp_norm(InputArray _src1, InputArray _src2, int normType, InputArray _mask, double &result) |
|
{ |
|
CV_INSTRUMENT_REGION_IPP(); |
|
|
|
#if IPP_VERSION_X100 >= 700 |
|
Mat src1 = _src1.getMat(), src2 = _src2.getMat(), mask = _mask.getMat(); |
|
|
|
if( normType & CV_RELATIVE ) |
|
{ |
|
normType &= NORM_TYPE_MASK; |
|
|
|
size_t total_size = src1.total(); |
|
int rows = src1.size[0], cols = rows ? (int)(total_size/rows) : 0; |
|
if( (src1.dims == 2 || (src1.isContinuous() && src2.isContinuous() && mask.isContinuous())) |
|
&& cols > 0 && (size_t)rows*cols == total_size ) |
|
{ |
|
if( !mask.empty() ) |
|
{ |
|
IppiSize sz = { cols, rows }; |
|
int type = src1.type(); |
|
|
|
typedef IppStatus (CV_STDCALL* ippiMaskNormDiffFuncC1)(const void *, int, const void *, int, const void *, int, IppiSize, Ipp64f *); |
|
ippiMaskNormDiffFuncC1 ippiNormRel_C1MR = |
|
normType == NORM_INF ? |
|
(type == CV_8UC1 ? (ippiMaskNormDiffFuncC1)ippiNormRel_Inf_8u_C1MR : |
|
type == CV_16UC1 ? (ippiMaskNormDiffFuncC1)ippiNormRel_Inf_16u_C1MR : |
|
type == CV_32FC1 ? (ippiMaskNormDiffFuncC1)ippiNormRel_Inf_32f_C1MR : |
|
0) : |
|
normType == NORM_L1 ? |
|
(type == CV_8UC1 ? (ippiMaskNormDiffFuncC1)ippiNormRel_L1_8u_C1MR : |
|
type == CV_16UC1 ? (ippiMaskNormDiffFuncC1)ippiNormRel_L1_16u_C1MR : |
|
type == CV_32FC1 ? (ippiMaskNormDiffFuncC1)ippiNormRel_L1_32f_C1MR : |
|
0) : |
|
normType == NORM_L2 || normType == NORM_L2SQR ? |
|
(type == CV_8UC1 ? (ippiMaskNormDiffFuncC1)ippiNormRel_L2_8u_C1MR : |
|
type == CV_16UC1 ? (ippiMaskNormDiffFuncC1)ippiNormRel_L2_16u_C1MR : |
|
type == CV_32FC1 ? (ippiMaskNormDiffFuncC1)ippiNormRel_L2_32f_C1MR : |
|
0) : 0; |
|
if( ippiNormRel_C1MR ) |
|
{ |
|
Ipp64f norm; |
|
if( CV_INSTRUMENT_FUN_IPP(ippiNormRel_C1MR, src1.ptr(), (int)src1.step[0], src2.ptr(), (int)src2.step[0], mask.ptr(), (int)mask.step[0], sz, &norm) >= 0 ) |
|
{ |
|
result = (normType == NORM_L2SQR ? (double)(norm * norm) : (double)norm); |
|
return true; |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
IppiSize sz = { cols*src1.channels(), rows }; |
|
int type = src1.depth(); |
|
|
|
typedef IppStatus (CV_STDCALL* ippiNormRelFuncHint)(const void *, int, const void *, int, IppiSize, Ipp64f *, IppHintAlgorithm hint); |
|
typedef IppStatus (CV_STDCALL* ippiNormRelFuncNoHint)(const void *, int, const void *, int, IppiSize, Ipp64f *); |
|
ippiNormRelFuncHint ippiNormRelHint = |
|
normType == NORM_L1 ? |
|
(type == CV_32F ? (ippiNormRelFuncHint)ippiNormRel_L1_32f_C1R : |
|
0) : |
|
normType == NORM_L2 || normType == NORM_L2SQR ? |
|
(type == CV_32F ? (ippiNormRelFuncHint)ippiNormRel_L2_32f_C1R : |
|
0) : 0; |
|
ippiNormRelFuncNoHint ippiNormRel = |
|
normType == NORM_INF ? |
|
(type == CV_8U ? (ippiNormRelFuncNoHint)ippiNormRel_Inf_8u_C1R : |
|
type == CV_16U ? (ippiNormRelFuncNoHint)ippiNormRel_Inf_16u_C1R : |
|
type == CV_16S ? (ippiNormRelFuncNoHint)ippiNormRel_Inf_16s_C1R : |
|
type == CV_32F ? (ippiNormRelFuncNoHint)ippiNormRel_Inf_32f_C1R : |
|
0) : |
|
normType == NORM_L1 ? |
|
(type == CV_8U ? (ippiNormRelFuncNoHint)ippiNormRel_L1_8u_C1R : |
|
type == CV_16U ? (ippiNormRelFuncNoHint)ippiNormRel_L1_16u_C1R : |
|
type == CV_16S ? (ippiNormRelFuncNoHint)ippiNormRel_L1_16s_C1R : |
|
0) : |
|
normType == NORM_L2 || normType == NORM_L2SQR ? |
|
(type == CV_8U ? (ippiNormRelFuncNoHint)ippiNormRel_L2_8u_C1R : |
|
type == CV_16U ? (ippiNormRelFuncNoHint)ippiNormRel_L2_16u_C1R : |
|
type == CV_16S ? (ippiNormRelFuncNoHint)ippiNormRel_L2_16s_C1R : |
|
0) : 0; |
|
if( ippiNormRelHint || ippiNormRel ) |
|
{ |
|
Ipp64f norm; |
|
IppStatus ret = ippiNormRelHint ? CV_INSTRUMENT_FUN_IPP(ippiNormRelHint, src1.ptr(), (int)src1.step[0], src2.ptr(), (int)src2.step[0], sz, &norm, ippAlgHintAccurate) : |
|
CV_INSTRUMENT_FUN_IPP(ippiNormRel, src1.ptr(), (int)src1.step[0], src2.ptr(), (int)src2.step[0], sz, &norm); |
|
if( ret >= 0 ) |
|
{ |
|
result = (normType == NORM_L2SQR) ? norm * norm : norm; |
|
return true; |
|
} |
|
} |
|
} |
|
} |
|
return false; |
|
} |
|
|
|
normType &= NORM_TYPE_MASK; |
|
|
|
size_t total_size = src1.total(); |
|
int rows = src1.size[0], cols = rows ? (int)(total_size/rows) : 0; |
|
if( (src1.dims == 2 || (src1.isContinuous() && src2.isContinuous() && mask.isContinuous())) |
|
&& cols > 0 && (size_t)rows*cols == total_size ) |
|
{ |
|
if( !mask.empty() ) |
|
{ |
|
IppiSize sz = { cols, rows }; |
|
int type = src1.type(); |
|
|
|
typedef IppStatus (CV_STDCALL* ippiMaskNormDiffFuncC1)(const void *, int, const void *, int, const void *, int, IppiSize, Ipp64f *); |
|
ippiMaskNormDiffFuncC1 ippiNormDiff_C1MR = |
|
normType == NORM_INF ? |
|
(type == CV_8UC1 ? (ippiMaskNormDiffFuncC1)ippiNormDiff_Inf_8u_C1MR : |
|
type == CV_16UC1 ? (ippiMaskNormDiffFuncC1)ippiNormDiff_Inf_16u_C1MR : |
|
type == CV_32FC1 ? (ippiMaskNormDiffFuncC1)ippiNormDiff_Inf_32f_C1MR : |
|
0) : |
|
normType == NORM_L1 ? |
|
(type == CV_8UC1 ? (ippiMaskNormDiffFuncC1)ippiNormDiff_L1_8u_C1MR : |
|
type == CV_16UC1 ? (ippiMaskNormDiffFuncC1)ippiNormDiff_L1_16u_C1MR : |
|
type == CV_32FC1 ? (ippiMaskNormDiffFuncC1)ippiNormDiff_L1_32f_C1MR : |
|
0) : |
|
normType == NORM_L2 || normType == NORM_L2SQR ? |
|
(type == CV_8UC1 ? (ippiMaskNormDiffFuncC1)ippiNormDiff_L2_8u_C1MR : |
|
type == CV_16UC1 ? (ippiMaskNormDiffFuncC1)ippiNormDiff_L2_16u_C1MR : |
|
type == CV_32FC1 ? (ippiMaskNormDiffFuncC1)ippiNormDiff_L2_32f_C1MR : |
|
0) : 0; |
|
if( ippiNormDiff_C1MR ) |
|
{ |
|
Ipp64f norm; |
|
if( CV_INSTRUMENT_FUN_IPP(ippiNormDiff_C1MR, src1.ptr(), (int)src1.step[0], src2.ptr(), (int)src2.step[0], mask.ptr(), (int)mask.step[0], sz, &norm) >= 0 ) |
|
{ |
|
result = (normType == NORM_L2SQR ? (double)(norm * norm) : (double)norm); |
|
return true; |
|
} |
|
} |
|
typedef IppStatus (CV_STDCALL* ippiMaskNormDiffFuncC3)(const void *, int, const void *, int, const void *, int, IppiSize, int, Ipp64f *); |
|
ippiMaskNormDiffFuncC3 ippiNormDiff_C3CMR = |
|
normType == NORM_INF ? |
|
(type == CV_8UC3 ? (ippiMaskNormDiffFuncC3)ippiNormDiff_Inf_8u_C3CMR : |
|
type == CV_16UC3 ? (ippiMaskNormDiffFuncC3)ippiNormDiff_Inf_16u_C3CMR : |
|
type == CV_32FC3 ? (ippiMaskNormDiffFuncC3)ippiNormDiff_Inf_32f_C3CMR : |
|
0) : |
|
normType == NORM_L1 ? |
|
(type == CV_8UC3 ? (ippiMaskNormDiffFuncC3)ippiNormDiff_L1_8u_C3CMR : |
|
type == CV_16UC3 ? (ippiMaskNormDiffFuncC3)ippiNormDiff_L1_16u_C3CMR : |
|
type == CV_32FC3 ? (ippiMaskNormDiffFuncC3)ippiNormDiff_L1_32f_C3CMR : |
|
0) : |
|
normType == NORM_L2 || normType == NORM_L2SQR ? |
|
(type == CV_8UC3 ? (ippiMaskNormDiffFuncC3)ippiNormDiff_L2_8u_C3CMR : |
|
type == CV_16UC3 ? (ippiMaskNormDiffFuncC3)ippiNormDiff_L2_16u_C3CMR : |
|
type == CV_32FC3 ? (ippiMaskNormDiffFuncC3)ippiNormDiff_L2_32f_C3CMR : |
|
0) : 0; |
|
if (cv::ipp::getIppTopFeatures() & ( |
|
#if IPP_VERSION_X100 >= 201700 |
|
ippCPUID_AVX512F | |
|
#endif |
|
ippCPUID_AVX2) |
|
) // IPP_DISABLE_NORM_16UC3_mask_small (#11399) |
|
{ |
|
if (normType == NORM_L1 && type == CV_16UC3 && sz.width < 16) |
|
return false; |
|
} |
|
if( ippiNormDiff_C3CMR ) |
|
{ |
|
Ipp64f norm1, norm2, norm3; |
|
if( CV_INSTRUMENT_FUN_IPP(ippiNormDiff_C3CMR, src1.data, (int)src1.step[0], src2.data, (int)src2.step[0], mask.data, (int)mask.step[0], sz, 1, &norm1) >= 0 && |
|
CV_INSTRUMENT_FUN_IPP(ippiNormDiff_C3CMR, src1.data, (int)src1.step[0], src2.data, (int)src2.step[0], mask.data, (int)mask.step[0], sz, 2, &norm2) >= 0 && |
|
CV_INSTRUMENT_FUN_IPP(ippiNormDiff_C3CMR, src1.data, (int)src1.step[0], src2.data, (int)src2.step[0], mask.data, (int)mask.step[0], sz, 3, &norm3) >= 0) |
|
{ |
|
Ipp64f norm = |
|
normType == NORM_INF ? std::max(std::max(norm1, norm2), norm3) : |
|
normType == NORM_L1 ? norm1 + norm2 + norm3 : |
|
normType == NORM_L2 || normType == NORM_L2SQR ? std::sqrt(norm1 * norm1 + norm2 * norm2 + norm3 * norm3) : |
|
0; |
|
result = (normType == NORM_L2SQR ? (double)(norm * norm) : (double)norm); |
|
return true; |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
IppiSize sz = { cols*src1.channels(), rows }; |
|
int type = src1.depth(); |
|
|
|
typedef IppStatus (CV_STDCALL* ippiNormDiffFuncHint)(const void *, int, const void *, int, IppiSize, Ipp64f *, IppHintAlgorithm hint); |
|
typedef IppStatus (CV_STDCALL* ippiNormDiffFuncNoHint)(const void *, int, const void *, int, IppiSize, Ipp64f *); |
|
ippiNormDiffFuncHint ippiNormDiffHint = |
|
normType == NORM_L1 ? |
|
(type == CV_32F ? (ippiNormDiffFuncHint)ippiNormDiff_L1_32f_C1R : |
|
0) : |
|
normType == NORM_L2 || normType == NORM_L2SQR ? |
|
(type == CV_32F ? (ippiNormDiffFuncHint)ippiNormDiff_L2_32f_C1R : |
|
0) : 0; |
|
ippiNormDiffFuncNoHint ippiNormDiff = |
|
normType == NORM_INF ? |
|
(type == CV_8U ? (ippiNormDiffFuncNoHint)ippiNormDiff_Inf_8u_C1R : |
|
type == CV_16U ? (ippiNormDiffFuncNoHint)ippiNormDiff_Inf_16u_C1R : |
|
type == CV_16S ? (ippiNormDiffFuncNoHint)ippiNormDiff_Inf_16s_C1R : |
|
type == CV_32F ? (ippiNormDiffFuncNoHint)ippiNormDiff_Inf_32f_C1R : |
|
0) : |
|
normType == NORM_L1 ? |
|
(type == CV_8U ? (ippiNormDiffFuncNoHint)ippiNormDiff_L1_8u_C1R : |
|
type == CV_16U ? (ippiNormDiffFuncNoHint)ippiNormDiff_L1_16u_C1R : |
|
type == CV_16S ? (ippiNormDiffFuncNoHint)ippiNormDiff_L1_16s_C1R : |
|
0) : |
|
normType == NORM_L2 || normType == NORM_L2SQR ? |
|
(type == CV_8U ? (ippiNormDiffFuncNoHint)ippiNormDiff_L2_8u_C1R : |
|
type == CV_16U ? (ippiNormDiffFuncNoHint)ippiNormDiff_L2_16u_C1R : |
|
type == CV_16S ? (ippiNormDiffFuncNoHint)ippiNormDiff_L2_16s_C1R : |
|
0) : 0; |
|
if( ippiNormDiffHint || ippiNormDiff ) |
|
{ |
|
Ipp64f norm; |
|
IppStatus ret = ippiNormDiffHint ? CV_INSTRUMENT_FUN_IPP(ippiNormDiffHint, src1.ptr(), (int)src1.step[0], src2.ptr(), (int)src2.step[0], sz, &norm, ippAlgHintAccurate) : |
|
CV_INSTRUMENT_FUN_IPP(ippiNormDiff, src1.ptr(), (int)src1.step[0], src2.ptr(), (int)src2.step[0], sz, &norm); |
|
if( ret >= 0 ) |
|
{ |
|
result = (normType == NORM_L2SQR) ? norm * norm : norm; |
|
return true; |
|
} |
|
} |
|
} |
|
} |
|
#else |
|
CV_UNUSED(_src1); CV_UNUSED(_src2); CV_UNUSED(normType); CV_UNUSED(_mask); CV_UNUSED(result); |
|
#endif |
|
return false; |
|
} |
|
} |
|
#endif |
|
|
|
|
|
double cv::norm( InputArray _src1, InputArray _src2, int normType, InputArray _mask ) |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
|
|
CV_CheckTypeEQ(_src1.type(), _src2.type(), "Input type mismatch"); |
|
CV_Assert(_src1.sameSize(_src2)); |
|
|
|
#if defined HAVE_OPENCL || defined HAVE_IPP |
|
double _result = 0; |
|
#endif |
|
|
|
#ifdef HAVE_OPENCL |
|
CV_OCL_RUN_(OCL_PERFORMANCE_CHECK(_src1.isUMat()), |
|
ocl_norm(_src1, _src2, normType, _mask, _result), |
|
_result) |
|
#endif |
|
|
|
CV_IPP_RUN(IPP_VERSION_X100 >= 700, ipp_norm(_src1, _src2, normType, _mask, _result), _result); |
|
|
|
if( normType & CV_RELATIVE ) |
|
{ |
|
return norm(_src1, _src2, normType & ~CV_RELATIVE, _mask)/(norm(_src2, normType, _mask) + DBL_EPSILON); |
|
} |
|
|
|
Mat src1 = _src1.getMat(), src2 = _src2.getMat(), mask = _mask.getMat(); |
|
int depth = src1.depth(), cn = src1.channels(); |
|
|
|
normType &= 7; |
|
CV_Assert( normType == NORM_INF || normType == NORM_L1 || |
|
normType == NORM_L2 || normType == NORM_L2SQR || |
|
((normType == NORM_HAMMING || normType == NORM_HAMMING2) && src1.type() == CV_8U) ); |
|
|
|
if( src1.isContinuous() && src2.isContinuous() && mask.empty() ) |
|
{ |
|
size_t len = src1.total()*src1.channels(); |
|
if( len == (size_t)(int)len ) |
|
{ |
|
if( src1.depth() == CV_32F ) |
|
{ |
|
const float* data1 = src1.ptr<float>(); |
|
const float* data2 = src2.ptr<float>(); |
|
|
|
if( normType == NORM_L2 ) |
|
{ |
|
double result = 0; |
|
GET_OPTIMIZED(normDiffL2_32f)(data1, data2, 0, &result, (int)len, 1); |
|
return std::sqrt(result); |
|
} |
|
if( normType == NORM_L2SQR ) |
|
{ |
|
double result = 0; |
|
GET_OPTIMIZED(normDiffL2_32f)(data1, data2, 0, &result, (int)len, 1); |
|
return result; |
|
} |
|
if( normType == NORM_L1 ) |
|
{ |
|
double result = 0; |
|
GET_OPTIMIZED(normDiffL1_32f)(data1, data2, 0, &result, (int)len, 1); |
|
return result; |
|
} |
|
if( normType == NORM_INF ) |
|
{ |
|
float result = 0; |
|
GET_OPTIMIZED(normDiffInf_32f)(data1, data2, 0, &result, (int)len, 1); |
|
return result; |
|
} |
|
} |
|
} |
|
} |
|
|
|
CV_Assert( mask.empty() || mask.type() == CV_8U ); |
|
|
|
if( normType == NORM_HAMMING || normType == NORM_HAMMING2 ) |
|
{ |
|
if( !mask.empty() ) |
|
{ |
|
Mat temp; |
|
bitwise_xor(src1, src2, temp); |
|
bitwise_and(temp, mask, temp); |
|
return norm(temp, normType); |
|
} |
|
int cellSize = normType == NORM_HAMMING ? 1 : 2; |
|
|
|
const Mat* arrays[] = {&src1, &src2, 0}; |
|
uchar* ptrs[2] = {}; |
|
NAryMatIterator it(arrays, ptrs); |
|
int total = (int)it.size; |
|
int result = 0; |
|
|
|
for( size_t i = 0; i < it.nplanes; i++, ++it ) |
|
{ |
|
result += hal::normHamming(ptrs[0], ptrs[1], total, cellSize); |
|
} |
|
|
|
return result; |
|
} |
|
|
|
NormDiffFunc func = getNormDiffFunc(normType >> 1, depth); |
|
CV_Assert( func != 0 ); |
|
|
|
const Mat* arrays[] = {&src1, &src2, &mask, 0}; |
|
uchar* ptrs[3] = {}; |
|
union |
|
{ |
|
double d; |
|
float f; |
|
int i; |
|
unsigned u; |
|
} |
|
result; |
|
result.d = 0; |
|
NAryMatIterator it(arrays, ptrs); |
|
CV_CheckLT((size_t)it.size, (size_t)INT_MAX, ""); |
|
|
|
if ((normType == NORM_L1 && depth <= CV_16S) || |
|
((normType == NORM_L2 || normType == NORM_L2SQR) && depth <= CV_8S)) |
|
{ |
|
// special case to handle "integer" overflow in accumulator |
|
const size_t esz = src1.elemSize(); |
|
const int total = (int)it.size; |
|
const int intSumBlockSize = normType == NORM_L1 && depth <= CV_8S ? (1 << 23) : (1 << 15); |
|
const int blockSize = std::min(total, intSumBlockSize); |
|
int isum = 0; |
|
int count = 0; |
|
|
|
for (size_t i = 0; i < it.nplanes; i++, ++it) |
|
{ |
|
for (int j = 0; j < total; j += blockSize) |
|
{ |
|
int bsz = std::min(total - j, blockSize); |
|
func(ptrs[0], ptrs[1], ptrs[2], (uchar*)&isum, bsz, cn); |
|
count += bsz; |
|
if (count + blockSize >= intSumBlockSize || (i+1 >= it.nplanes && j+bsz >= total)) |
|
{ |
|
result.d += isum; |
|
isum = 0; |
|
count = 0; |
|
} |
|
ptrs[0] += bsz*esz; |
|
ptrs[1] += bsz*esz; |
|
if (ptrs[2]) |
|
ptrs[2] += bsz; |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
// generic implementation |
|
for (size_t i = 0; i < it.nplanes; i++, ++it) |
|
{ |
|
func(ptrs[0], ptrs[1], ptrs[2], (uchar*)&result, (int)it.size, cn); |
|
} |
|
} |
|
|
|
if( normType == NORM_INF ) |
|
{ |
|
if( depth == CV_64F ) |
|
return result.d; |
|
else if( depth == CV_32F ) |
|
return result.f; |
|
else |
|
return result.u; |
|
} |
|
else if( normType == NORM_L2 ) |
|
return std::sqrt(result.d); |
|
|
|
return result.d; |
|
} |
|
|
|
cv::Hamming::ResultType cv::Hamming::operator()( const unsigned char* a, const unsigned char* b, int size ) const |
|
{ |
|
return cv::hal::normHamming(a, b, size); |
|
} |
|
|
|
double cv::PSNR(InputArray _src1, InputArray _src2) |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
|
|
//Input arrays must have depth CV_8U |
|
CV_Assert( _src1.depth() == CV_8U && _src2.depth() == CV_8U ); |
|
|
|
double diff = std::sqrt(norm(_src1, _src2, NORM_L2SQR)/(_src1.total()*_src1.channels())); |
|
return 20*log10(255./(diff+DBL_EPSILON)); |
|
}
|
|
|