mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
71 lines
2.3 KiB
71 lines
2.3 KiB
#!/usr/bin/env python |
|
|
|
''' |
|
camera calibration for distorted images with chess board samples |
|
reads distorted images, calculates the calibration and write undistorted images |
|
''' |
|
|
|
# Python 2/3 compatibility |
|
from __future__ import print_function |
|
|
|
import numpy as np |
|
import cv2 |
|
|
|
from tests_common import NewOpenCVTests |
|
|
|
class calibration_test(NewOpenCVTests): |
|
|
|
def test_calibration(self): |
|
|
|
from glob import glob |
|
img_names = [] |
|
for i in range(1, 15): |
|
if i < 10: |
|
img_names.append('samples/data/left0{}.jpg'.format(str(i))) |
|
elif i != 10: |
|
img_names.append('samples/data/left{}.jpg'.format(str(i))) |
|
|
|
square_size = 1.0 |
|
pattern_size = (9, 6) |
|
pattern_points = np.zeros((np.prod(pattern_size), 3), np.float32) |
|
pattern_points[:, :2] = np.indices(pattern_size).T.reshape(-1, 2) |
|
pattern_points *= square_size |
|
|
|
obj_points = [] |
|
img_points = [] |
|
h, w = 0, 0 |
|
img_names_undistort = [] |
|
for fn in img_names: |
|
img = self.get_sample(fn, 0) |
|
if img is None: |
|
continue |
|
|
|
h, w = img.shape[:2] |
|
found, corners = cv2.findChessboardCorners(img, pattern_size) |
|
if found: |
|
term = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_COUNT, 30, 0.1) |
|
cv2.cornerSubPix(img, corners, (5, 5), (-1, -1), term) |
|
|
|
if not found: |
|
continue |
|
|
|
img_points.append(corners.reshape(-1, 2)) |
|
obj_points.append(pattern_points) |
|
|
|
# calculate camera distortion |
|
rms, camera_matrix, dist_coefs, rvecs, tvecs = cv2.calibrateCamera(obj_points, img_points, (w, h), None, None, flags = 0) |
|
|
|
eps = 0.01 |
|
normCamEps = 10.0 |
|
normDistEps = 0.001 |
|
|
|
cameraMatrixTest = [[ 532.80992189, 0., 342.4952186 ], |
|
[ 0., 532.93346422, 233.8879292 ], |
|
[ 0., 0., 1. ]] |
|
|
|
distCoeffsTest = [ -2.81325576e-01, 2.91130406e-02, |
|
1.21234330e-03, -1.40825372e-04, 1.54865844e-01] |
|
|
|
self.assertLess(abs(rms - 0.196334638034), eps) |
|
self.assertLess(cv2.norm(camera_matrix - cameraMatrixTest, cv2.NORM_L1), normCamEps) |
|
self.assertLess(cv2.norm(dist_coefs - distCoeffsTest, cv2.NORM_L1), normDistEps) |