mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
215 lines
7.5 KiB
215 lines
7.5 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved. |
|
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// @Authors |
|
// Jin Ma, jin@multicorewareinc.com |
|
// Xiaopeng Fu, fuxiaopeng2222@163.com |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors as is and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
#include "perf_precomp.hpp" |
|
using namespace perf; |
|
using namespace std; |
|
using namespace cv::ocl; |
|
using namespace cv; |
|
using std::tr1::tuple; |
|
using std::tr1::get; |
|
////////////////////////////////// K-NEAREST NEIGHBOR //////////////////////////////////// |
|
static void genData(Mat& trainData, Size size, Mat& trainLabel = Mat().setTo(Scalar::all(0)), int nClasses = 0) |
|
{ |
|
trainData.create(size, CV_32FC1); |
|
randu(trainData, 1.0, 100.0); |
|
|
|
if (nClasses != 0) |
|
{ |
|
trainLabel.create(size.height, 1, CV_8UC1); |
|
randu(trainLabel, 0, nClasses - 1); |
|
trainLabel.convertTo(trainLabel, CV_32FC1); |
|
} |
|
} |
|
|
|
typedef tuple<int> KNNParamType; |
|
typedef TestBaseWithParam<KNNParamType> KNNFixture; |
|
|
|
PERF_TEST_P(KNNFixture, KNN, |
|
testing::Values(1000, 2000, 4000)) |
|
{ |
|
KNNParamType params = GetParam(); |
|
const int rows = get<0>(params); |
|
int columns = 100; |
|
int k = rows/250; |
|
|
|
Mat trainData, trainLabels; |
|
Size size(columns, rows); |
|
genData(trainData, size, trainLabels, 3); |
|
|
|
Mat testData; |
|
genData(testData, size); |
|
Mat best_label; |
|
|
|
if (RUN_PLAIN_IMPL) |
|
{ |
|
TEST_CYCLE() |
|
{ |
|
CvKNearest knn_cpu; |
|
knn_cpu.train(trainData, trainLabels); |
|
knn_cpu.find_nearest(testData, k, &best_label); |
|
} |
|
} |
|
else if (RUN_OCL_IMPL) |
|
{ |
|
cv::ocl::oclMat best_label_ocl; |
|
cv::ocl::oclMat testdata; |
|
testdata.upload(testData); |
|
|
|
OCL_TEST_CYCLE() |
|
{ |
|
cv::ocl::KNearestNeighbour knn_ocl; |
|
knn_ocl.train(trainData, trainLabels); |
|
knn_ocl.find_nearest(testdata, k, best_label_ocl); |
|
} |
|
best_label_ocl.download(best_label); |
|
} |
|
else |
|
OCL_PERF_ELSE |
|
SANITY_CHECK(best_label); |
|
} |
|
|
|
|
|
typedef TestBaseWithParam<tuple<int> > SVMFixture; |
|
|
|
// code is based on: samples\cpp\tutorial_code\ml\non_linear_svms\non_linear_svms.cpp |
|
PERF_TEST_P(SVMFixture, DISABLED_SVM, |
|
testing::Values(50, 100)) |
|
{ |
|
|
|
const int NTRAINING_SAMPLES = get<0>(GetParam()); // Number of training samples per class |
|
|
|
#define FRAC_LINEAR_SEP 0.9f // Fraction of samples which compose the linear separable part |
|
|
|
const int WIDTH = 512, HEIGHT = 512; |
|
|
|
Mat trainData(2*NTRAINING_SAMPLES, 2, CV_32FC1); |
|
Mat labels (2*NTRAINING_SAMPLES, 1, CV_32FC1); |
|
|
|
RNG rng(100); // Random value generation class |
|
|
|
// Set up the linearly separable part of the training data |
|
int nLinearSamples = (int) (FRAC_LINEAR_SEP * NTRAINING_SAMPLES); |
|
|
|
// Generate random points for the class 1 |
|
Mat trainClass = trainData.rowRange(0, nLinearSamples); |
|
// The x coordinate of the points is in [0, 0.4) |
|
Mat c = trainClass.colRange(0, 1); |
|
rng.fill(c, RNG::UNIFORM, Scalar(1), Scalar(0.4 * WIDTH)); |
|
// The y coordinate of the points is in [0, 1) |
|
c = trainClass.colRange(1,2); |
|
rng.fill(c, RNG::UNIFORM, Scalar(1), Scalar(HEIGHT)); |
|
|
|
// Generate random points for the class 2 |
|
trainClass = trainData.rowRange(2*NTRAINING_SAMPLES-nLinearSamples, 2*NTRAINING_SAMPLES); |
|
// The x coordinate of the points is in [0.6, 1] |
|
c = trainClass.colRange(0 , 1); |
|
rng.fill(c, RNG::UNIFORM, Scalar(0.6*WIDTH), Scalar(WIDTH)); |
|
// The y coordinate of the points is in [0, 1) |
|
c = trainClass.colRange(1,2); |
|
rng.fill(c, RNG::UNIFORM, Scalar(1), Scalar(HEIGHT)); |
|
|
|
//------------------ Set up the non-linearly separable part of the training data --------------- |
|
|
|
// Generate random points for the classes 1 and 2 |
|
trainClass = trainData.rowRange( nLinearSamples, 2*NTRAINING_SAMPLES-nLinearSamples); |
|
// The x coordinate of the points is in [0.4, 0.6) |
|
c = trainClass.colRange(0,1); |
|
rng.fill(c, RNG::UNIFORM, Scalar(0.4*WIDTH), Scalar(0.6*WIDTH)); |
|
// The y coordinate of the points is in [0, 1) |
|
c = trainClass.colRange(1,2); |
|
rng.fill(c, RNG::UNIFORM, Scalar(1), Scalar(HEIGHT)); |
|
|
|
//------------------------- Set up the labels for the classes --------------------------------- |
|
labels.rowRange( 0, NTRAINING_SAMPLES).setTo(1); // Class 1 |
|
labels.rowRange(NTRAINING_SAMPLES, 2*NTRAINING_SAMPLES).setTo(2); // Class 2 |
|
|
|
//------------------------ Set up the support vector machines parameters -------------------- |
|
CvSVMParams params; |
|
params.svm_type = SVM::C_SVC; |
|
params.C = 0.1; |
|
params.kernel_type = SVM::LINEAR; |
|
params.term_crit = TermCriteria(CV_TERMCRIT_ITER, (int)1e7, 1e-6); |
|
|
|
Mat dst = Mat::zeros(HEIGHT, WIDTH, CV_8UC1); |
|
|
|
Mat samples(WIDTH*HEIGHT, 2, CV_32FC1); |
|
int k = 0; |
|
for (int i = 0; i < HEIGHT; ++i) |
|
{ |
|
for (int j = 0; j < WIDTH; ++j) |
|
{ |
|
samples.at<float>(k, 0) = (float)i; |
|
samples.at<float>(k, 0) = (float)j; |
|
k++; |
|
} |
|
} |
|
Mat results(WIDTH*HEIGHT, 1, CV_32FC1); |
|
|
|
CvMat samples_ = samples; |
|
CvMat results_ = results; |
|
|
|
if (RUN_PLAIN_IMPL) |
|
{ |
|
CvSVM svm; |
|
svm.train(trainData, labels, Mat(), Mat(), params); |
|
TEST_CYCLE() |
|
{ |
|
svm.predict(&samples_, &results_); |
|
} |
|
} |
|
else if (RUN_OCL_IMPL) |
|
{ |
|
CvSVM_OCL svm; |
|
svm.train(trainData, labels, Mat(), Mat(), params); |
|
OCL_TEST_CYCLE() |
|
{ |
|
svm.predict(&samples_, &results_); |
|
} |
|
} |
|
else |
|
OCL_PERF_ELSE |
|
|
|
SANITY_CHECK_NOTHING(); |
|
}
|
|
|