mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
130 lines
5.0 KiB
130 lines
5.0 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved. |
|
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// @Authors |
|
// Fangfang Bai, fangfang@multicorewareinc.com |
|
// Jin Ma, jin@multicorewareinc.com |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors as is and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "perf_precomp.hpp" |
|
|
|
using namespace perf; |
|
using namespace cv; |
|
using std::tr1::get; |
|
|
|
///////////// blend //////////////////////// |
|
|
|
template <typename T> |
|
static void blendLinearGold(const Mat &img1, const Mat &img2, |
|
const Mat &weights1, const Mat &weights2, |
|
Mat &result_gold) |
|
{ |
|
CV_Assert(img1.size() == img2.size() && img1.type() == img2.type()); |
|
CV_Assert(weights1.size() == weights2.size() && weights1.size() == img1.size() && |
|
weights1.type() == CV_32FC1 && weights2.type() == CV_32FC1); |
|
|
|
result_gold.create(img1.size(), img1.type()); |
|
|
|
int cn = img1.channels(); |
|
int step1 = img1.cols * img1.channels(); |
|
|
|
for (int y = 0; y < img1.rows; ++y) |
|
{ |
|
const float * const weights1_row = weights1.ptr<float>(y); |
|
const float * const weights2_row = weights2.ptr<float>(y); |
|
const T * const img1_row = img1.ptr<T>(y); |
|
const T * const img2_row = img2.ptr<T>(y); |
|
T * const result_gold_row = result_gold.ptr<T>(y); |
|
|
|
for (int x = 0; x < step1; ++x) |
|
{ |
|
int x1 = x / cn; |
|
float w1 = weights1_row[x1], w2 = weights2_row[x1]; |
|
result_gold_row[x] = saturate_cast<T>(((float)img1_row[x] * w1 |
|
+ (float)img2_row[x] * w2) / (w1 + w2 + 1e-5f)); |
|
} |
|
} |
|
} |
|
|
|
typedef void (*blendFunction)(const Mat &img1, const Mat &img2, |
|
const Mat &weights1, const Mat &weights2, |
|
Mat &result_gold); |
|
|
|
typedef Size_MatType BlendLinearFixture; |
|
|
|
OCL_PERF_TEST_P(BlendLinearFixture, BlendLinear, |
|
::testing::Combine(OCL_TEST_SIZES, OCL_PERF_ENUM(CV_32FC1, CV_32FC4))) |
|
{ |
|
Size_MatType_t params = GetParam(); |
|
const Size srcSize = get<0>(params); |
|
const int srcType = get<1>(params); |
|
const double eps = CV_MAT_DEPTH(srcType) <= CV_32S ? 1.0 : 0.2; |
|
|
|
Mat src1(srcSize, srcType), src2(srcSize, srcType), dst(srcSize, srcType); |
|
Mat weights1(srcSize, CV_32FC1), weights2(srcSize, CV_32FC1); |
|
|
|
declare.in(src1, src2, WARMUP_RNG).out(dst); |
|
randu(weights1, 0.0f, 1.0f); |
|
randu(weights2, 0.0f, 1.0f); |
|
|
|
if (RUN_OCL_IMPL) |
|
{ |
|
ocl::oclMat oclSrc1(src1), oclSrc2(src2), oclDst; |
|
ocl::oclMat oclWeights1(weights1), oclWeights2(weights2); |
|
|
|
OCL_TEST_CYCLE() ocl::blendLinear(oclSrc1, oclSrc2, oclWeights1, oclWeights2, oclDst); |
|
|
|
oclDst.download(dst); |
|
|
|
SANITY_CHECK(dst, eps); |
|
} |
|
else if (RUN_PLAIN_IMPL) |
|
{ |
|
blendFunction funcs[] = { (blendFunction)blendLinearGold<uchar>, (blendFunction)blendLinearGold<float> }; |
|
int funcIdx = CV_MAT_DEPTH(srcType) == CV_8UC1 ? 0 : 1; |
|
|
|
TEST_CYCLE() (funcs[funcIdx])(src1, src2, weights1, weights2, dst); |
|
|
|
SANITY_CHECK(dst, eps); |
|
} |
|
else |
|
OCL_PERF_ELSE |
|
}
|
|
|