mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1251 lines
45 KiB
1251 lines
45 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// Intel License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of Intel Corporation may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "test_precomp.hpp" |
|
#include "opencv2/calib3d/calib3d.hpp" |
|
|
|
using namespace std; |
|
using namespace cv; |
|
|
|
const string FEATURES2D_DIR = "features2d"; |
|
const string DETECTOR_DIR = FEATURES2D_DIR + "/feature_detectors"; |
|
const string DESCRIPTOR_DIR = FEATURES2D_DIR + "/descriptor_extractors"; |
|
const string IMAGE_FILENAME = "tsukuba.png"; |
|
|
|
#if defined(HAVE_OPENCV_OCL) && 0 // unblock this to see SURF_OCL tests failures |
|
static Ptr<Feature2D> getSURF() |
|
{ |
|
ocl::PlatformsInfo p; |
|
if(ocl::getOpenCLPlatforms(p) > 0) |
|
return new ocl::SURF_OCL; |
|
else |
|
return new SURF; |
|
} |
|
#else |
|
static Ptr<Feature2D> getSURF() |
|
{ |
|
return new SURF; |
|
} |
|
#endif |
|
|
|
/****************************************************************************************\ |
|
* Regression tests for feature detectors comparing keypoints. * |
|
\****************************************************************************************/ |
|
|
|
class CV_FeatureDetectorTest : public cvtest::BaseTest |
|
{ |
|
public: |
|
CV_FeatureDetectorTest( const string& _name, const Ptr<FeatureDetector>& _fdetector ) : |
|
name(_name), fdetector(_fdetector) {} |
|
|
|
protected: |
|
bool isSimilarKeypoints( const KeyPoint& p1, const KeyPoint& p2 ); |
|
void compareKeypointSets( const vector<KeyPoint>& validKeypoints, const vector<KeyPoint>& calcKeypoints ); |
|
|
|
void emptyDataTest(); |
|
void regressionTest(); // TODO test of detect() with mask |
|
|
|
virtual void run( int ); |
|
|
|
string name; |
|
Ptr<FeatureDetector> fdetector; |
|
}; |
|
|
|
void CV_FeatureDetectorTest::emptyDataTest() |
|
{ |
|
// One image. |
|
Mat image; |
|
vector<KeyPoint> keypoints; |
|
try |
|
{ |
|
fdetector->detect( image, keypoints ); |
|
} |
|
catch(...) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "detect() on empty image must not generate exception (1).\n" ); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); |
|
} |
|
|
|
if( !keypoints.empty() ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "detect() on empty image must return empty keypoints vector (1).\n" ); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); |
|
return; |
|
} |
|
|
|
// Several images. |
|
vector<Mat> images; |
|
vector<vector<KeyPoint> > keypointCollection; |
|
try |
|
{ |
|
fdetector->detect( images, keypointCollection ); |
|
} |
|
catch(...) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "detect() on empty image vector must not generate exception (2).\n" ); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); |
|
} |
|
} |
|
|
|
bool CV_FeatureDetectorTest::isSimilarKeypoints( const KeyPoint& p1, const KeyPoint& p2 ) |
|
{ |
|
const float maxPtDif = 1.f; |
|
const float maxSizeDif = 1.f; |
|
const float maxAngleDif = 2.f; |
|
const float maxResponseDif = 0.1f; |
|
|
|
float dist = (float)norm( p1.pt - p2.pt ); |
|
return (dist < maxPtDif && |
|
fabs(p1.size - p2.size) < maxSizeDif && |
|
abs(p1.angle - p2.angle) < maxAngleDif && |
|
abs(p1.response - p2.response) < maxResponseDif && |
|
p1.octave == p2.octave && |
|
p1.class_id == p2.class_id ); |
|
} |
|
|
|
void CV_FeatureDetectorTest::compareKeypointSets( const vector<KeyPoint>& validKeypoints, const vector<KeyPoint>& calcKeypoints ) |
|
{ |
|
const float maxCountRatioDif = 0.01f; |
|
|
|
// Compare counts of validation and calculated keypoints. |
|
float countRatio = (float)validKeypoints.size() / (float)calcKeypoints.size(); |
|
if( countRatio < 1 - maxCountRatioDif || countRatio > 1.f + maxCountRatioDif ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "Bad keypoints count ratio (validCount = %d, calcCount = %d).\n", |
|
validKeypoints.size(), calcKeypoints.size() ); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); |
|
return; |
|
} |
|
|
|
int progress = 0, progressCount = (int)(validKeypoints.size() * calcKeypoints.size()); |
|
int badPointCount = 0, commonPointCount = max((int)validKeypoints.size(), (int)calcKeypoints.size()); |
|
for( size_t v = 0; v < validKeypoints.size(); v++ ) |
|
{ |
|
int nearestIdx = -1; |
|
float minDist = std::numeric_limits<float>::max(); |
|
|
|
for( size_t c = 0; c < calcKeypoints.size(); c++ ) |
|
{ |
|
progress = update_progress( progress, (int)(v*calcKeypoints.size() + c), progressCount, 0 ); |
|
float curDist = (float)norm( calcKeypoints[c].pt - validKeypoints[v].pt ); |
|
if( curDist < minDist ) |
|
{ |
|
minDist = curDist; |
|
nearestIdx = (int)c; |
|
} |
|
} |
|
|
|
assert( minDist >= 0 ); |
|
if( !isSimilarKeypoints( validKeypoints[v], calcKeypoints[nearestIdx] ) ) |
|
badPointCount++; |
|
} |
|
ts->printf( cvtest::TS::LOG, "badPointCount = %d; validPointCount = %d; calcPointCount = %d\n", |
|
badPointCount, validKeypoints.size(), calcKeypoints.size() ); |
|
if( badPointCount > 0.9 * commonPointCount ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, " - Bad accuracy!\n" ); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY ); |
|
return; |
|
} |
|
ts->printf( cvtest::TS::LOG, " - OK\n" ); |
|
} |
|
|
|
void CV_FeatureDetectorTest::regressionTest() |
|
{ |
|
assert( !fdetector.empty() ); |
|
string imgFilename = string(ts->get_data_path()) + FEATURES2D_DIR + "/" + IMAGE_FILENAME; |
|
string resFilename = string(ts->get_data_path()) + DETECTOR_DIR + "/" + string(name) + ".xml.gz"; |
|
|
|
// Read the test image. |
|
Mat image = imread( imgFilename ); |
|
if( image.empty() ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "Image %s can not be read.\n", imgFilename.c_str() ); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); |
|
return; |
|
} |
|
|
|
FileStorage fs( resFilename, FileStorage::READ ); |
|
|
|
// Compute keypoints. |
|
vector<KeyPoint> calcKeypoints; |
|
fdetector->detect( image, calcKeypoints ); |
|
|
|
if( fs.isOpened() ) // Compare computed and valid keypoints. |
|
{ |
|
// TODO compare saved feature detector params with current ones |
|
|
|
// Read validation keypoints set. |
|
vector<KeyPoint> validKeypoints; |
|
read( fs["keypoints"], validKeypoints ); |
|
if( validKeypoints.empty() ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "Keypoints can not be read.\n" ); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); |
|
return; |
|
} |
|
|
|
compareKeypointSets( validKeypoints, calcKeypoints ); |
|
} |
|
else // Write detector parameters and computed keypoints as validation data. |
|
{ |
|
fs.open( resFilename, FileStorage::WRITE ); |
|
if( !fs.isOpened() ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "File %s can not be opened to write.\n", resFilename.c_str() ); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); |
|
return; |
|
} |
|
else |
|
{ |
|
fs << "detector_params" << "{"; |
|
fdetector->write( fs ); |
|
fs << "}"; |
|
|
|
write( fs, "keypoints", calcKeypoints ); |
|
} |
|
} |
|
} |
|
|
|
void CV_FeatureDetectorTest::run( int /*start_from*/ ) |
|
{ |
|
if( fdetector.empty() ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "Feature detector is empty.\n" ); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); |
|
return; |
|
} |
|
|
|
emptyDataTest(); |
|
regressionTest(); |
|
|
|
ts->set_failed_test_info( cvtest::TS::OK ); |
|
} |
|
|
|
/****************************************************************************************\ |
|
* Regression tests for descriptor extractors. * |
|
\****************************************************************************************/ |
|
static void writeMatInBin( const Mat& mat, const string& filename ) |
|
{ |
|
FILE* f = fopen( filename.c_str(), "wb"); |
|
if( f ) |
|
{ |
|
int type = mat.type(); |
|
fwrite( (void*)&mat.rows, sizeof(int), 1, f ); |
|
fwrite( (void*)&mat.cols, sizeof(int), 1, f ); |
|
fwrite( (void*)&type, sizeof(int), 1, f ); |
|
int dataSize = (int)(mat.step * mat.rows * mat.channels()); |
|
fwrite( (void*)&dataSize, sizeof(int), 1, f ); |
|
fwrite( (void*)mat.data, 1, dataSize, f ); |
|
fclose(f); |
|
} |
|
} |
|
|
|
static Mat readMatFromBin( const string& filename ) |
|
{ |
|
FILE* f = fopen( filename.c_str(), "rb" ); |
|
if( f ) |
|
{ |
|
int rows, cols, type, dataSize; |
|
size_t elements_read1 = fread( (void*)&rows, sizeof(int), 1, f ); |
|
size_t elements_read2 = fread( (void*)&cols, sizeof(int), 1, f ); |
|
size_t elements_read3 = fread( (void*)&type, sizeof(int), 1, f ); |
|
size_t elements_read4 = fread( (void*)&dataSize, sizeof(int), 1, f ); |
|
CV_Assert(elements_read1 == 1 && elements_read2 == 1 && elements_read3 == 1 && elements_read4 == 1); |
|
|
|
uchar* data = (uchar*)cvAlloc(dataSize); |
|
size_t elements_read = fread( (void*)data, 1, dataSize, f ); |
|
CV_Assert(elements_read == (size_t)(dataSize)); |
|
fclose(f); |
|
|
|
return Mat( rows, cols, type, data ); |
|
} |
|
return Mat(); |
|
} |
|
|
|
template<class Distance> |
|
class CV_DescriptorExtractorTest : public cvtest::BaseTest |
|
{ |
|
public: |
|
typedef typename Distance::ValueType ValueType; |
|
typedef typename Distance::ResultType DistanceType; |
|
|
|
CV_DescriptorExtractorTest( const string _name, DistanceType _maxDist, const Ptr<DescriptorExtractor>& _dextractor, |
|
Distance d = Distance() ): |
|
name(_name), maxDist(_maxDist), dextractor(_dextractor), distance(d) {} |
|
protected: |
|
virtual void createDescriptorExtractor() {} |
|
|
|
void compareDescriptors( const Mat& validDescriptors, const Mat& calcDescriptors ) |
|
{ |
|
if( validDescriptors.size != calcDescriptors.size || validDescriptors.type() != calcDescriptors.type() ) |
|
{ |
|
ts->printf(cvtest::TS::LOG, "Valid and computed descriptors matrices must have the same size and type.\n"); |
|
ts->printf(cvtest::TS::LOG, "Valid size is (%d x %d) actual size is (%d x %d).\n", validDescriptors.rows, validDescriptors.cols, calcDescriptors.rows, calcDescriptors.cols); |
|
ts->printf(cvtest::TS::LOG, "Valid type is %d actual type is %d.\n", validDescriptors.type(), calcDescriptors.type()); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); |
|
return; |
|
} |
|
|
|
CV_Assert( DataType<ValueType>::type == validDescriptors.type() ); |
|
|
|
int dimension = validDescriptors.cols; |
|
DistanceType curMaxDist = std::numeric_limits<DistanceType>::min(); |
|
for( int y = 0; y < validDescriptors.rows; y++ ) |
|
{ |
|
DistanceType dist = distance( validDescriptors.ptr<ValueType>(y), calcDescriptors.ptr<ValueType>(y), dimension ); |
|
if( dist > curMaxDist ) |
|
curMaxDist = dist; |
|
} |
|
|
|
stringstream ss; |
|
ss << "Max distance between valid and computed descriptors " << curMaxDist; |
|
if( curMaxDist < maxDist ) |
|
ss << "." << endl; |
|
else |
|
{ |
|
ss << ">" << maxDist << " - bad accuracy!"<< endl; |
|
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY ); |
|
} |
|
ts->printf(cvtest::TS::LOG, ss.str().c_str() ); |
|
} |
|
|
|
void emptyDataTest() |
|
{ |
|
assert( !dextractor.empty() ); |
|
|
|
// One image. |
|
Mat image; |
|
vector<KeyPoint> keypoints; |
|
Mat descriptors; |
|
|
|
try |
|
{ |
|
dextractor->compute( image, keypoints, descriptors ); |
|
} |
|
catch(...) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "compute() on empty image and empty keypoints must not generate exception (1).\n"); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); |
|
} |
|
|
|
image.create( 50, 50, CV_8UC3 ); |
|
try |
|
{ |
|
dextractor->compute( image, keypoints, descriptors ); |
|
} |
|
catch(...) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "compute() on nonempty image and empty keypoints must not generate exception (1).\n"); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); |
|
} |
|
|
|
// Several images. |
|
vector<Mat> images; |
|
vector<vector<KeyPoint> > keypointsCollection; |
|
vector<Mat> descriptorsCollection; |
|
try |
|
{ |
|
dextractor->compute( images, keypointsCollection, descriptorsCollection ); |
|
} |
|
catch(...) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "compute() on empty images and empty keypoints collection must not generate exception (2).\n"); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); |
|
} |
|
} |
|
|
|
void regressionTest() |
|
{ |
|
assert( !dextractor.empty() ); |
|
|
|
// Read the test image. |
|
string imgFilename = string(ts->get_data_path()) + FEATURES2D_DIR + "/" + IMAGE_FILENAME; |
|
|
|
Mat img = imread( imgFilename ); |
|
if( img.empty() ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "Image %s can not be read.\n", imgFilename.c_str() ); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); |
|
return; |
|
} |
|
|
|
vector<KeyPoint> keypoints; |
|
FileStorage fs( string(ts->get_data_path()) + FEATURES2D_DIR + "/keypoints.xml.gz", FileStorage::READ ); |
|
if( fs.isOpened() ) |
|
{ |
|
read( fs.getFirstTopLevelNode(), keypoints ); |
|
|
|
Mat calcDescriptors; |
|
double t = (double)getTickCount(); |
|
dextractor->compute( img, keypoints, calcDescriptors ); |
|
t = getTickCount() - t; |
|
ts->printf(cvtest::TS::LOG, "\nAverage time of computing one descriptor = %g ms.\n", t/((double)cvGetTickFrequency()*1000.)/calcDescriptors.rows ); |
|
|
|
if( calcDescriptors.rows != (int)keypoints.size() ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "Count of computed descriptors and keypoints count must be equal.\n" ); |
|
ts->printf( cvtest::TS::LOG, "Count of keypoints is %d.\n", (int)keypoints.size() ); |
|
ts->printf( cvtest::TS::LOG, "Count of computed descriptors is %d.\n", calcDescriptors.rows ); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); |
|
return; |
|
} |
|
|
|
if( calcDescriptors.cols != dextractor->descriptorSize() || calcDescriptors.type() != dextractor->descriptorType() ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "Incorrect descriptor size or descriptor type.\n" ); |
|
ts->printf( cvtest::TS::LOG, "Expected size is %d.\n", dextractor->descriptorSize() ); |
|
ts->printf( cvtest::TS::LOG, "Calculated size is %d.\n", calcDescriptors.cols ); |
|
ts->printf( cvtest::TS::LOG, "Expected type is %d.\n", dextractor->descriptorType() ); |
|
ts->printf( cvtest::TS::LOG, "Calculated type is %d.\n", calcDescriptors.type() ); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); |
|
return; |
|
} |
|
|
|
// TODO read and write descriptor extractor parameters and check them |
|
Mat validDescriptors = readDescriptors(); |
|
if( !validDescriptors.empty() ) |
|
compareDescriptors( validDescriptors, calcDescriptors ); |
|
else |
|
{ |
|
if( !writeDescriptors( calcDescriptors ) ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "Descriptors can not be written.\n" ); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); |
|
return; |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
ts->printf( cvtest::TS::LOG, "Compute and write keypoints.\n" ); |
|
fs.open( string(ts->get_data_path()) + FEATURES2D_DIR + "/keypoints.xml.gz", FileStorage::WRITE ); |
|
if( fs.isOpened() ) |
|
{ |
|
SurfFeatureDetector fd; |
|
fd.detect(img, keypoints); |
|
write( fs, "keypoints", keypoints ); |
|
} |
|
else |
|
{ |
|
ts->printf(cvtest::TS::LOG, "File for writting keypoints can not be opened.\n"); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); |
|
return; |
|
} |
|
} |
|
} |
|
|
|
void run(int) |
|
{ |
|
createDescriptorExtractor(); |
|
if( dextractor.empty() ) |
|
{ |
|
ts->printf(cvtest::TS::LOG, "Descriptor extractor is empty.\n"); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); |
|
return; |
|
} |
|
|
|
emptyDataTest(); |
|
regressionTest(); |
|
|
|
ts->set_failed_test_info( cvtest::TS::OK ); |
|
} |
|
|
|
virtual Mat readDescriptors() |
|
{ |
|
Mat res = readMatFromBin( string(ts->get_data_path()) + DESCRIPTOR_DIR + "/" + string(name) ); |
|
return res; |
|
} |
|
|
|
virtual bool writeDescriptors( Mat& descs ) |
|
{ |
|
writeMatInBin( descs, string(ts->get_data_path()) + DESCRIPTOR_DIR + "/" + string(name) ); |
|
return true; |
|
} |
|
|
|
string name; |
|
const DistanceType maxDist; |
|
Ptr<DescriptorExtractor> dextractor; |
|
Distance distance; |
|
|
|
private: |
|
CV_DescriptorExtractorTest& operator=(const CV_DescriptorExtractorTest&) { return *this; } |
|
}; |
|
|
|
/*template<typename T, typename Distance> |
|
class CV_CalonderDescriptorExtractorTest : public CV_DescriptorExtractorTest<Distance> |
|
{ |
|
public: |
|
CV_CalonderDescriptorExtractorTest( const char* testName, float _normDif, float _prevTime ) : |
|
CV_DescriptorExtractorTest<Distance>( testName, _normDif, Ptr<DescriptorExtractor>(), _prevTime ) |
|
{} |
|
|
|
protected: |
|
virtual void createDescriptorExtractor() |
|
{ |
|
CV_DescriptorExtractorTest<Distance>::dextractor = |
|
new CalonderDescriptorExtractor<T>( string(CV_DescriptorExtractorTest<Distance>::ts->get_data_path()) + |
|
FEATURES2D_DIR + "/calonder_classifier.rtc"); |
|
} |
|
};*/ |
|
|
|
/****************************************************************************************\ |
|
* Algorithmic tests for descriptor matchers * |
|
\****************************************************************************************/ |
|
class CV_DescriptorMatcherTest : public cvtest::BaseTest |
|
{ |
|
public: |
|
CV_DescriptorMatcherTest( const string& _name, const Ptr<DescriptorMatcher>& _dmatcher, float _badPart ) : |
|
badPart(_badPart), name(_name), dmatcher(_dmatcher) |
|
{} |
|
protected: |
|
static const int dim = 500; |
|
static const int queryDescCount = 300; // must be even number because we split train data in some cases in two |
|
static const int countFactor = 4; // do not change it |
|
const float badPart; |
|
|
|
virtual void run( int ); |
|
void generateData( Mat& query, Mat& train ); |
|
|
|
void emptyDataTest(); |
|
void matchTest( const Mat& query, const Mat& train ); |
|
void knnMatchTest( const Mat& query, const Mat& train ); |
|
void radiusMatchTest( const Mat& query, const Mat& train ); |
|
|
|
string name; |
|
Ptr<DescriptorMatcher> dmatcher; |
|
|
|
private: |
|
CV_DescriptorMatcherTest& operator=(const CV_DescriptorMatcherTest&) { return *this; } |
|
}; |
|
|
|
void CV_DescriptorMatcherTest::emptyDataTest() |
|
{ |
|
assert( !dmatcher.empty() ); |
|
Mat queryDescriptors, trainDescriptors, mask; |
|
vector<Mat> trainDescriptorCollection, masks; |
|
vector<DMatch> matches; |
|
vector<vector<DMatch> > vmatches; |
|
|
|
try |
|
{ |
|
dmatcher->match( queryDescriptors, trainDescriptors, matches, mask ); |
|
} |
|
catch(...) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "match() on empty descriptors must not generate exception (1).\n" ); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); |
|
} |
|
|
|
try |
|
{ |
|
dmatcher->knnMatch( queryDescriptors, trainDescriptors, vmatches, 2, mask ); |
|
} |
|
catch(...) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "knnMatch() on empty descriptors must not generate exception (1).\n" ); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); |
|
} |
|
|
|
try |
|
{ |
|
dmatcher->radiusMatch( queryDescriptors, trainDescriptors, vmatches, 10.f, mask ); |
|
} |
|
catch(...) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "radiusMatch() on empty descriptors must not generate exception (1).\n" ); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); |
|
} |
|
|
|
try |
|
{ |
|
dmatcher->add( trainDescriptorCollection ); |
|
} |
|
catch(...) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "add() on empty descriptors must not generate exception.\n" ); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); |
|
} |
|
|
|
try |
|
{ |
|
dmatcher->match( queryDescriptors, matches, masks ); |
|
} |
|
catch(...) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "match() on empty descriptors must not generate exception (2).\n" ); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); |
|
} |
|
|
|
try |
|
{ |
|
dmatcher->knnMatch( queryDescriptors, vmatches, 2, masks ); |
|
} |
|
catch(...) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "knnMatch() on empty descriptors must not generate exception (2).\n" ); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); |
|
} |
|
|
|
try |
|
{ |
|
dmatcher->radiusMatch( queryDescriptors, vmatches, 10.f, masks ); |
|
} |
|
catch(...) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "radiusMatch() on empty descriptors must not generate exception (2).\n" ); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); |
|
} |
|
|
|
} |
|
|
|
void CV_DescriptorMatcherTest::generateData( Mat& query, Mat& train ) |
|
{ |
|
RNG& rng = theRNG(); |
|
|
|
// Generate query descriptors randomly. |
|
// Descriptor vector elements are integer values. |
|
Mat buf( queryDescCount, dim, CV_32SC1 ); |
|
rng.fill( buf, RNG::UNIFORM, Scalar::all(0), Scalar(3) ); |
|
buf.convertTo( query, CV_32FC1 ); |
|
|
|
// Generate train decriptors as follows: |
|
// copy each query descriptor to train set countFactor times |
|
// and perturb some one element of the copied descriptors in |
|
// in ascending order. General boundaries of the perturbation |
|
// are (0.f, 1.f). |
|
train.create( query.rows*countFactor, query.cols, CV_32FC1 ); |
|
float step = 1.f / countFactor; |
|
for( int qIdx = 0; qIdx < query.rows; qIdx++ ) |
|
{ |
|
Mat queryDescriptor = query.row(qIdx); |
|
for( int c = 0; c < countFactor; c++ ) |
|
{ |
|
int tIdx = qIdx * countFactor + c; |
|
Mat trainDescriptor = train.row(tIdx); |
|
queryDescriptor.copyTo( trainDescriptor ); |
|
int elem = rng(dim); |
|
float diff = rng.uniform( step*c, step*(c+1) ); |
|
trainDescriptor.at<float>(0, elem) += diff; |
|
} |
|
} |
|
} |
|
|
|
void CV_DescriptorMatcherTest::matchTest( const Mat& query, const Mat& train ) |
|
{ |
|
dmatcher->clear(); |
|
|
|
// test const version of match() |
|
{ |
|
vector<DMatch> matches; |
|
dmatcher->match( query, train, matches ); |
|
|
|
if( (int)matches.size() != queryDescCount ) |
|
{ |
|
ts->printf(cvtest::TS::LOG, "Incorrect matches count while test match() function (1).\n"); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); |
|
} |
|
else |
|
{ |
|
int badCount = 0; |
|
for( size_t i = 0; i < matches.size(); i++ ) |
|
{ |
|
DMatch match = matches[i]; |
|
if( (match.queryIdx != (int)i) || (match.trainIdx != (int)i*countFactor) || (match.imgIdx != 0) ) |
|
badCount++; |
|
} |
|
if( (float)badCount > (float)queryDescCount*badPart ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "%f - too large bad matches part while test match() function (1).\n", |
|
(float)badCount/(float)queryDescCount ); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); |
|
} |
|
} |
|
} |
|
|
|
// test version of match() with add() |
|
{ |
|
vector<DMatch> matches; |
|
// make add() twice to test such case |
|
dmatcher->add( vector<Mat>(1,train.rowRange(0, train.rows/2)) ); |
|
dmatcher->add( vector<Mat>(1,train.rowRange(train.rows/2, train.rows)) ); |
|
// prepare masks (make first nearest match illegal) |
|
vector<Mat> masks(2); |
|
for(int mi = 0; mi < 2; mi++ ) |
|
{ |
|
masks[mi] = Mat(query.rows, train.rows/2, CV_8UC1, Scalar::all(1)); |
|
for( int di = 0; di < queryDescCount/2; di++ ) |
|
masks[mi].col(di*countFactor).setTo(Scalar::all(0)); |
|
} |
|
|
|
dmatcher->match( query, matches, masks ); |
|
|
|
if( (int)matches.size() != queryDescCount ) |
|
{ |
|
ts->printf(cvtest::TS::LOG, "Incorrect matches count while test match() function (2).\n"); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); |
|
} |
|
else |
|
{ |
|
int badCount = 0; |
|
for( size_t i = 0; i < matches.size(); i++ ) |
|
{ |
|
DMatch match = matches[i]; |
|
int shift = dmatcher->isMaskSupported() ? 1 : 0; |
|
{ |
|
if( i < queryDescCount/2 ) |
|
{ |
|
if( (match.queryIdx != (int)i) || (match.trainIdx != (int)i*countFactor + shift) || (match.imgIdx != 0) ) |
|
badCount++; |
|
} |
|
else |
|
{ |
|
if( (match.queryIdx != (int)i) || (match.trainIdx != ((int)i-queryDescCount/2)*countFactor + shift) || (match.imgIdx != 1) ) |
|
badCount++; |
|
} |
|
} |
|
} |
|
if( (float)badCount > (float)queryDescCount*badPart ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "%f - too large bad matches part while test match() function (2).\n", |
|
(float)badCount/(float)queryDescCount ); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY ); |
|
} |
|
} |
|
} |
|
} |
|
|
|
void CV_DescriptorMatcherTest::knnMatchTest( const Mat& query, const Mat& train ) |
|
{ |
|
dmatcher->clear(); |
|
|
|
// test const version of knnMatch() |
|
{ |
|
const int knn = 3; |
|
|
|
vector<vector<DMatch> > matches; |
|
dmatcher->knnMatch( query, train, matches, knn ); |
|
|
|
if( (int)matches.size() != queryDescCount ) |
|
{ |
|
ts->printf(cvtest::TS::LOG, "Incorrect matches count while test knnMatch() function (1).\n"); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); |
|
} |
|
else |
|
{ |
|
int badCount = 0; |
|
for( size_t i = 0; i < matches.size(); i++ ) |
|
{ |
|
if( (int)matches[i].size() != knn ) |
|
badCount++; |
|
else |
|
{ |
|
int localBadCount = 0; |
|
for( int k = 0; k < knn; k++ ) |
|
{ |
|
DMatch match = matches[i][k]; |
|
if( (match.queryIdx != (int)i) || (match.trainIdx != (int)i*countFactor+k) || (match.imgIdx != 0) ) |
|
localBadCount++; |
|
} |
|
badCount += localBadCount > 0 ? 1 : 0; |
|
} |
|
} |
|
if( (float)badCount > (float)queryDescCount*badPart ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "%f - too large bad matches part while test knnMatch() function (1).\n", |
|
(float)badCount/(float)queryDescCount ); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); |
|
} |
|
} |
|
} |
|
|
|
// test version of knnMatch() with add() |
|
{ |
|
const int knn = 2; |
|
vector<vector<DMatch> > matches; |
|
// make add() twice to test such case |
|
dmatcher->add( vector<Mat>(1,train.rowRange(0, train.rows/2)) ); |
|
dmatcher->add( vector<Mat>(1,train.rowRange(train.rows/2, train.rows)) ); |
|
// prepare masks (make first nearest match illegal) |
|
vector<Mat> masks(2); |
|
for(int mi = 0; mi < 2; mi++ ) |
|
{ |
|
masks[mi] = Mat(query.rows, train.rows/2, CV_8UC1, Scalar::all(1)); |
|
for( int di = 0; di < queryDescCount/2; di++ ) |
|
masks[mi].col(di*countFactor).setTo(Scalar::all(0)); |
|
} |
|
|
|
dmatcher->knnMatch( query, matches, knn, masks ); |
|
|
|
if( (int)matches.size() != queryDescCount ) |
|
{ |
|
ts->printf(cvtest::TS::LOG, "Incorrect matches count while test knnMatch() function (2).\n"); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); |
|
} |
|
else |
|
{ |
|
int badCount = 0; |
|
int shift = dmatcher->isMaskSupported() ? 1 : 0; |
|
for( size_t i = 0; i < matches.size(); i++ ) |
|
{ |
|
if( (int)matches[i].size() != knn ) |
|
badCount++; |
|
else |
|
{ |
|
int localBadCount = 0; |
|
for( int k = 0; k < knn; k++ ) |
|
{ |
|
DMatch match = matches[i][k]; |
|
{ |
|
if( i < queryDescCount/2 ) |
|
{ |
|
if( (match.queryIdx != (int)i) || (match.trainIdx != (int)i*countFactor + k + shift) || |
|
(match.imgIdx != 0) ) |
|
localBadCount++; |
|
} |
|
else |
|
{ |
|
if( (match.queryIdx != (int)i) || (match.trainIdx != ((int)i-queryDescCount/2)*countFactor + k + shift) || |
|
(match.imgIdx != 1) ) |
|
localBadCount++; |
|
} |
|
} |
|
} |
|
badCount += localBadCount > 0 ? 1 : 0; |
|
} |
|
} |
|
if( (float)badCount > (float)queryDescCount*badPart ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "%f - too large bad matches part while test knnMatch() function (2).\n", |
|
(float)badCount/(float)queryDescCount ); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY ); |
|
} |
|
} |
|
} |
|
} |
|
|
|
void CV_DescriptorMatcherTest::radiusMatchTest( const Mat& query, const Mat& train ) |
|
{ |
|
dmatcher->clear(); |
|
// test const version of match() |
|
{ |
|
const float radius = 1.f/countFactor; |
|
vector<vector<DMatch> > matches; |
|
dmatcher->radiusMatch( query, train, matches, radius ); |
|
|
|
if( (int)matches.size() != queryDescCount ) |
|
{ |
|
ts->printf(cvtest::TS::LOG, "Incorrect matches count while test radiusMatch() function (1).\n"); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); |
|
} |
|
else |
|
{ |
|
int badCount = 0; |
|
for( size_t i = 0; i < matches.size(); i++ ) |
|
{ |
|
if( (int)matches[i].size() != 1 ) |
|
badCount++; |
|
else |
|
{ |
|
DMatch match = matches[i][0]; |
|
if( (match.queryIdx != (int)i) || (match.trainIdx != (int)i*countFactor) || (match.imgIdx != 0) ) |
|
badCount++; |
|
} |
|
} |
|
if( (float)badCount > (float)queryDescCount*badPart ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "%f - too large bad matches part while test radiusMatch() function (1).\n", |
|
(float)badCount/(float)queryDescCount ); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); |
|
} |
|
} |
|
} |
|
|
|
// test version of match() with add() |
|
{ |
|
int n = 3; |
|
const float radius = 1.f/countFactor * n; |
|
vector<vector<DMatch> > matches; |
|
// make add() twice to test such case |
|
dmatcher->add( vector<Mat>(1,train.rowRange(0, train.rows/2)) ); |
|
dmatcher->add( vector<Mat>(1,train.rowRange(train.rows/2, train.rows)) ); |
|
// prepare masks (make first nearest match illegal) |
|
vector<Mat> masks(2); |
|
for(int mi = 0; mi < 2; mi++ ) |
|
{ |
|
masks[mi] = Mat(query.rows, train.rows/2, CV_8UC1, Scalar::all(1)); |
|
for( int di = 0; di < queryDescCount/2; di++ ) |
|
masks[mi].col(di*countFactor).setTo(Scalar::all(0)); |
|
} |
|
|
|
dmatcher->radiusMatch( query, matches, radius, masks ); |
|
|
|
//int curRes = cvtest::TS::OK; |
|
if( (int)matches.size() != queryDescCount ) |
|
{ |
|
ts->printf(cvtest::TS::LOG, "Incorrect matches count while test radiusMatch() function (1).\n"); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); |
|
} |
|
|
|
int badCount = 0; |
|
int shift = dmatcher->isMaskSupported() ? 1 : 0; |
|
int needMatchCount = dmatcher->isMaskSupported() ? n-1 : n; |
|
for( size_t i = 0; i < matches.size(); i++ ) |
|
{ |
|
if( (int)matches[i].size() != needMatchCount ) |
|
badCount++; |
|
else |
|
{ |
|
int localBadCount = 0; |
|
for( int k = 0; k < needMatchCount; k++ ) |
|
{ |
|
DMatch match = matches[i][k]; |
|
{ |
|
if( i < queryDescCount/2 ) |
|
{ |
|
if( (match.queryIdx != (int)i) || (match.trainIdx != (int)i*countFactor + k + shift) || |
|
(match.imgIdx != 0) ) |
|
localBadCount++; |
|
} |
|
else |
|
{ |
|
if( (match.queryIdx != (int)i) || (match.trainIdx != ((int)i-queryDescCount/2)*countFactor + k + shift) || |
|
(match.imgIdx != 1) ) |
|
localBadCount++; |
|
} |
|
} |
|
} |
|
badCount += localBadCount > 0 ? 1 : 0; |
|
} |
|
} |
|
if( (float)badCount > (float)queryDescCount*badPart ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "%f - too large bad matches part while test radiusMatch() function (2).\n", |
|
(float)badCount/(float)queryDescCount ); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY ); |
|
} |
|
} |
|
} |
|
|
|
void CV_DescriptorMatcherTest::run( int ) |
|
{ |
|
Mat query, train; |
|
generateData( query, train ); |
|
|
|
matchTest( query, train ); |
|
|
|
knnMatchTest( query, train ); |
|
|
|
radiusMatchTest( query, train ); |
|
} |
|
|
|
/****************************************************************************************\ |
|
* Tests registrations * |
|
\****************************************************************************************/ |
|
|
|
/* |
|
* Detectors |
|
*/ |
|
|
|
|
|
TEST( Features2d_Detector_SIFT, regression ) |
|
{ |
|
CV_FeatureDetectorTest test( "detector-sift", FeatureDetector::create("SIFT") ); |
|
test.safe_run(); |
|
} |
|
|
|
TEST( Features2d_Detector_SURF, regression ) |
|
{ |
|
CV_FeatureDetectorTest test( "detector-surf", Ptr<FeatureDetector>(getSURF()) ); |
|
test.safe_run(); |
|
} |
|
|
|
/* |
|
* Descriptors |
|
*/ |
|
|
|
#ifdef __aarch64__ |
|
// The discrepancy is 1, but 0.03 is allowed |
|
TEST( Features2d_DescriptorExtractor_SIFT, DISABLED_regression ) |
|
#else |
|
TEST( Features2d_DescriptorExtractor_SIFT, regression ) |
|
#endif |
|
{ |
|
CV_DescriptorExtractorTest<L2<float> > test( "descriptor-sift", 0.03f, |
|
DescriptorExtractor::create("SIFT") ); |
|
test.safe_run(); |
|
} |
|
|
|
TEST( Features2d_DescriptorExtractor_SURF, regression ) |
|
{ |
|
CV_DescriptorExtractorTest<L2<float> > test( "descriptor-surf", 0.05f, |
|
Ptr<DescriptorExtractor>(getSURF()) ); |
|
test.safe_run(); |
|
} |
|
|
|
#ifdef __aarch64__ |
|
// The discrepancy is 1, but 0.18 is allowed |
|
TEST( Features2d_DescriptorExtractor_OpponentSIFT, DISABLED_regression ) |
|
#else |
|
TEST( Features2d_DescriptorExtractor_OpponentSIFT, regression ) |
|
#endif |
|
{ |
|
CV_DescriptorExtractorTest<L2<float> > test( "descriptor-opponent-sift", 0.18f, |
|
DescriptorExtractor::create("OpponentSIFT") ); |
|
test.safe_run(); |
|
} |
|
|
|
TEST( Features2d_DescriptorExtractor_OpponentSURF, regression ) |
|
{ |
|
CV_DescriptorExtractorTest<L2<float> > test( "descriptor-opponent-surf", 0.3f, |
|
DescriptorExtractor::create("OpponentSURF") ); |
|
test.safe_run(); |
|
} |
|
|
|
/*#if CV_SSE2 |
|
TEST( Features2d_DescriptorExtractor_Calonder_uchar, regression ) |
|
{ |
|
CV_CalonderDescriptorExtractorTest<uchar, L2<uchar> > test( "descriptor-calonder-uchar", |
|
std::numeric_limits<float>::epsilon() + 1, |
|
0.0132175f ); |
|
test.safe_run(); |
|
} |
|
|
|
TEST( Features2d_DescriptorExtractor_Calonder_float, regression ) |
|
{ |
|
CV_CalonderDescriptorExtractorTest<float, L2<float> > test( "descriptor-calonder-float", |
|
std::numeric_limits<float>::epsilon(), |
|
0.0221308f ); |
|
test.safe_run(); |
|
} |
|
#endif*/ // CV_SSE2 |
|
|
|
TEST(Features2d_BruteForceDescriptorMatcher_knnMatch, regression) |
|
{ |
|
const int sz = 100; |
|
const int k = 3; |
|
|
|
Ptr<DescriptorExtractor> ext = Ptr<DescriptorExtractor>(getSURF()); |
|
ASSERT_TRUE(ext != NULL); |
|
|
|
Ptr<FeatureDetector> det = Ptr<FeatureDetector>(getSURF()); |
|
//"%YAML:1.0\nhessianThreshold: 8000.\noctaves: 3\noctaveLayers: 4\nupright: 0\n" |
|
ASSERT_TRUE(det != NULL); |
|
|
|
Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create("BruteForce"); |
|
ASSERT_TRUE(matcher != NULL); |
|
|
|
Mat imgT(sz, sz, CV_8U, Scalar(255)); |
|
line(imgT, Point(20, sz/2), Point(sz-21, sz/2), Scalar(100), 2); |
|
line(imgT, Point(sz/2, 20), Point(sz/2, sz-21), Scalar(100), 2); |
|
vector<KeyPoint> kpT; |
|
kpT.push_back( KeyPoint(50, 50, 16, 0, 20000, 1, -1) ); |
|
kpT.push_back( KeyPoint(42, 42, 16, 160, 10000, 1, -1) ); |
|
Mat descT; |
|
ext->compute(imgT, kpT, descT); |
|
|
|
Mat imgQ(sz, sz, CV_8U, Scalar(255)); |
|
line(imgQ, Point(30, sz/2), Point(sz-31, sz/2), Scalar(100), 3); |
|
line(imgQ, Point(sz/2, 30), Point(sz/2, sz-31), Scalar(100), 3); |
|
vector<KeyPoint> kpQ; |
|
det->detect(imgQ, kpQ); |
|
Mat descQ; |
|
ext->compute(imgQ, kpQ, descQ); |
|
|
|
vector<vector<DMatch> > matches; |
|
|
|
matcher->knnMatch(descQ, descT, matches, k); |
|
|
|
//cout << "\nBest " << k << " matches to " << descT.rows << " train desc-s." << endl; |
|
ASSERT_EQ(descQ.rows, static_cast<int>(matches.size())); |
|
for(size_t i = 0; i<matches.size(); i++) |
|
{ |
|
//cout << "\nmatches[" << i << "].size()==" << matches[i].size() << endl; |
|
ASSERT_GE(min(k, descT.rows), static_cast<int>(matches[i].size())); |
|
for(size_t j = 0; j<matches[i].size(); j++) |
|
{ |
|
//cout << "\t" << matches[i][j].queryIdx << " -> " << matches[i][j].trainIdx << endl; |
|
ASSERT_EQ(matches[i][j].queryIdx, static_cast<int>(i)); |
|
} |
|
} |
|
} |
|
|
|
/*TEST(Features2d_DescriptorExtractorParamTest, regression) |
|
{ |
|
Ptr<DescriptorExtractor> s = DescriptorExtractor::create("SURF"); |
|
ASSERT_STREQ(s->paramHelp("extended").c_str(), ""); |
|
} |
|
*/ |
|
|
|
class CV_DetectPlanarTest : public cvtest::BaseTest |
|
{ |
|
public: |
|
CV_DetectPlanarTest(const string& _fname, int _min_ninliers) : fname(_fname), min_ninliers(_min_ninliers) {} |
|
|
|
protected: |
|
void run(int) |
|
{ |
|
Ptr<Feature2D> f; |
|
if(fname == "SURF") |
|
f = getSURF(); |
|
else |
|
f = Algorithm::create<Feature2D>("Feature2D." + fname); |
|
if(f.empty()) |
|
return; |
|
string path = string(ts->get_data_path()) + "detectors_descriptors_evaluation/planar/"; |
|
string imgname1 = path + "box.png"; |
|
string imgname2 = path + "box_in_scene.png"; |
|
Mat img1 = imread(imgname1, 0); |
|
Mat img2 = imread(imgname2, 0); |
|
if( img1.empty() || img2.empty() ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "missing %s and/or %s\n", imgname1.c_str(), imgname2.c_str()); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); |
|
return; |
|
} |
|
vector<KeyPoint> kpt1, kpt2; |
|
Mat d1, d2; |
|
f->operator()(img1, Mat(), kpt1, d1); |
|
f->operator()(img1, Mat(), kpt2, d2); |
|
for( size_t i = 0; i < kpt1.size(); i++ ) |
|
CV_Assert(kpt1[i].response > 0 ); |
|
for( size_t i = 0; i < kpt2.size(); i++ ) |
|
CV_Assert(kpt2[i].response > 0 ); |
|
|
|
vector<DMatch> matches; |
|
BFMatcher(NORM_L2, true).match(d1, d2, matches); |
|
|
|
vector<Point2f> pt1, pt2; |
|
for( size_t i = 0; i < matches.size(); i++ ) { |
|
pt1.push_back(kpt1[matches[i].queryIdx].pt); |
|
pt2.push_back(kpt2[matches[i].trainIdx].pt); |
|
} |
|
|
|
Mat inliers, H = findHomography(pt1, pt2, RANSAC, 10, inliers); |
|
int ninliers = countNonZero(inliers); |
|
|
|
if( ninliers < min_ninliers ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "too little inliers (%d) vs expected %d\n", ninliers, min_ninliers); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); |
|
return; |
|
} |
|
} |
|
|
|
string fname; |
|
int min_ninliers; |
|
}; |
|
|
|
TEST(Features2d_SIFTHomographyTest, regression) { CV_DetectPlanarTest test("SIFT", 80); test.safe_run(); } |
|
TEST(Features2d_SURFHomographyTest, regression) { CV_DetectPlanarTest test("SURF", 80); test.safe_run(); } |
|
|
|
class FeatureDetectorUsingMaskTest : public cvtest::BaseTest |
|
{ |
|
public: |
|
FeatureDetectorUsingMaskTest(const Ptr<FeatureDetector>& featureDetector) : |
|
featureDetector_(featureDetector) |
|
{ |
|
CV_Assert(!featureDetector_.empty()); |
|
} |
|
|
|
protected: |
|
|
|
void run(int) |
|
{ |
|
const int nStepX = 2; |
|
const int nStepY = 2; |
|
|
|
const string imageFilename = string(ts->get_data_path()) + "/features2d/tsukuba.png"; |
|
|
|
Mat image = imread(imageFilename); |
|
if(image.empty()) |
|
{ |
|
ts->printf(cvtest::TS::LOG, "Image %s can not be read.\n", imageFilename.c_str()); |
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA); |
|
return; |
|
} |
|
|
|
Mat mask(image.size(), CV_8U); |
|
|
|
const int stepX = image.size().width / nStepX; |
|
const int stepY = image.size().height / nStepY; |
|
|
|
vector<KeyPoint> keyPoints; |
|
vector<Point2f> points; |
|
for(int i=0; i<nStepX; ++i) |
|
for(int j=0; j<nStepY; ++j) |
|
{ |
|
|
|
mask.setTo(0); |
|
Rect whiteArea(i * stepX, j * stepY, stepX, stepY); |
|
mask(whiteArea).setTo(255); |
|
|
|
featureDetector_->detect(image, keyPoints, mask); |
|
KeyPoint::convert(keyPoints, points); |
|
|
|
for(size_t k=0; k<points.size(); ++k) |
|
{ |
|
if ( !whiteArea.contains(points[k]) ) |
|
{ |
|
ts->printf(cvtest::TS::LOG, "The feature point is outside of the mask."); |
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); |
|
return; |
|
} |
|
} |
|
} |
|
|
|
ts->set_failed_test_info( cvtest::TS::OK ); |
|
} |
|
|
|
Ptr<FeatureDetector> featureDetector_; |
|
}; |
|
|
|
TEST(Features2d_SIFT_using_mask, regression) |
|
{ |
|
FeatureDetectorUsingMaskTest test(Algorithm::create<FeatureDetector>("Feature2D.SIFT")); |
|
test.safe_run(); |
|
} |
|
|
|
TEST(DISABLED_Features2d_SURF_using_mask, regression) |
|
{ |
|
FeatureDetectorUsingMaskTest test(Algorithm::create<FeatureDetector>("Feature2D.SURF")); |
|
test.safe_run(); |
|
}
|
|
|