mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
201 lines
6.9 KiB
201 lines
6.9 KiB
#include <iostream> |
|
#include <vector> |
|
#include <opencv2/highgui.hpp> |
|
#include <opencv2/objdetect/aruco_detector.hpp> |
|
#include "aruco_samples_utility.hpp" |
|
|
|
using namespace std; |
|
using namespace cv; |
|
|
|
namespace { |
|
const char* about = "Pose estimation using a ArUco Planar Grid board"; |
|
|
|
//! [aruco_detect_board_keys] |
|
const char* keys = |
|
"{w | | Number of squares in X direction }" |
|
"{h | | Number of squares in Y direction }" |
|
"{l | | Marker side length (in pixels) }" |
|
"{s | | Separation between two consecutive markers in the grid (in pixels)}" |
|
"{d | | dictionary: DICT_4X4_50=0, DICT_4X4_100=1, DICT_4X4_250=2," |
|
"DICT_4X4_1000=3, DICT_5X5_50=4, DICT_5X5_100=5, DICT_5X5_250=6, DICT_5X5_1000=7, " |
|
"DICT_6X6_50=8, DICT_6X6_100=9, DICT_6X6_250=10, DICT_6X6_1000=11, DICT_7X7_50=12," |
|
"DICT_7X7_100=13, DICT_7X7_250=14, DICT_7X7_1000=15, DICT_ARUCO_ORIGINAL = 16}" |
|
"{cd | | Input file with custom dictionary }" |
|
"{c | | Output file with calibrated camera parameters }" |
|
"{v | | Input from video or image file, if omitted, input comes from camera }" |
|
"{ci | 0 | Camera id if input doesnt come from video (-v) }" |
|
"{dp | | File of marker detector parameters }" |
|
"{rs | | Apply refind strategy }" |
|
"{r | | show rejected candidates too }"; |
|
} |
|
//! [aruco_detect_board_keys] |
|
|
|
static void readDetectorParamsFromCommandLine(CommandLineParser &parser, aruco::DetectorParameters& detectorParams) { |
|
if(parser.has("dp")) { |
|
FileStorage fs(parser.get<string>("dp"), FileStorage::READ); |
|
bool readOk = detectorParams.readDetectorParameters(fs.root()); |
|
if(!readOk) { |
|
cerr << "Invalid detector parameters file" << endl; |
|
throw -1; |
|
} |
|
} |
|
} |
|
|
|
static void readCameraParamsFromCommandLine(CommandLineParser &parser, Mat& camMatrix, Mat& distCoeffs) { |
|
if(parser.has("c")) { |
|
bool readOk = readCameraParameters(parser.get<string>("c"), camMatrix, distCoeffs); |
|
if(!readOk) { |
|
cerr << "Invalid camera file" << endl; |
|
throw -1; |
|
} |
|
} |
|
} |
|
|
|
static void readDictionatyFromCommandLine(CommandLineParser &parser, aruco::Dictionary& dictionary) { |
|
if (parser.has("d")) { |
|
int dictionaryId = parser.get<int>("d"); |
|
dictionary = aruco::getPredefinedDictionary(aruco::PredefinedDictionaryType(dictionaryId)); |
|
} |
|
else if (parser.has("cd")) { |
|
FileStorage fs(parser.get<string>("cd"), FileStorage::READ); |
|
bool readOk = dictionary.readDictionary(fs.root()); |
|
if(!readOk) { |
|
cerr << "Invalid dictionary file" << endl; |
|
throw -1; |
|
} |
|
} |
|
else { |
|
cerr << "Dictionary not specified" << endl; |
|
throw -1; |
|
} |
|
} |
|
|
|
int main(int argc, char *argv[]) { |
|
CommandLineParser parser(argc, argv, keys); |
|
parser.about(about); |
|
|
|
if(argc < 7) { |
|
parser.printMessage(); |
|
return 0; |
|
} |
|
|
|
//! [aruco_detect_board_full_sample] |
|
int markersX = parser.get<int>("w"); |
|
int markersY = parser.get<int>("h"); |
|
float markerLength = parser.get<float>("l"); |
|
float markerSeparation = parser.get<float>("s"); |
|
bool showRejected = parser.has("r"); |
|
bool refindStrategy = parser.has("rs"); |
|
int camId = parser.get<int>("ci"); |
|
|
|
|
|
Mat camMatrix, distCoeffs; |
|
readCameraParamsFromCommandLine(parser, camMatrix, distCoeffs); |
|
|
|
aruco::DetectorParameters detectorParams; |
|
detectorParams.cornerRefinementMethod = aruco::CORNER_REFINE_SUBPIX; // do corner refinement in markers |
|
readDetectorParamsFromCommandLine(parser, detectorParams); |
|
|
|
String video; |
|
if(parser.has("v")) { |
|
video = parser.get<String>("v"); |
|
} |
|
|
|
if(!parser.check()) { |
|
parser.printErrors(); |
|
return 0; |
|
} |
|
|
|
aruco::Dictionary dictionary = aruco::getPredefinedDictionary(cv::aruco::DICT_4X4_50); |
|
readDictionatyFromCommandLine(parser, dictionary); |
|
|
|
aruco::ArucoDetector detector(dictionary, detectorParams); |
|
VideoCapture inputVideo; |
|
int waitTime; |
|
if(!video.empty()) { |
|
inputVideo.open(video); |
|
waitTime = 0; |
|
} else { |
|
inputVideo.open(camId); |
|
waitTime = 10; |
|
} |
|
|
|
float axisLength = 0.5f * ((float)min(markersX, markersY) * (markerLength + markerSeparation) + |
|
markerSeparation); |
|
|
|
// Create GridBoard object |
|
//! [aruco_create_board] |
|
aruco::GridBoard board(Size(markersX, markersY), markerLength, markerSeparation, dictionary); |
|
//! [aruco_create_board] |
|
|
|
// Also you could create Board object |
|
//vector<vector<Point3f> > objPoints; // array of object points of all the marker corners in the board |
|
//vector<int> ids; // vector of the identifiers of the markers in the board |
|
//aruco::Board board(objPoints, dictionary, ids); |
|
|
|
double totalTime = 0; |
|
int totalIterations = 0; |
|
|
|
while(inputVideo.grab()) { |
|
Mat image, imageCopy; |
|
inputVideo.retrieve(image); |
|
|
|
double tick = (double)getTickCount(); |
|
|
|
vector<int> ids; |
|
vector<vector<Point2f>> corners, rejected; |
|
Vec3d rvec, tvec; |
|
|
|
//! [aruco_detect_and_refine] |
|
|
|
// Detect markers |
|
detector.detectMarkers(image, corners, ids, rejected); |
|
|
|
// Refind strategy to detect more markers |
|
if(refindStrategy) |
|
detector.refineDetectedMarkers(image, board, corners, ids, rejected, camMatrix, |
|
distCoeffs); |
|
|
|
//! [aruco_detect_and_refine] |
|
|
|
// Estimate board pose |
|
int markersOfBoardDetected = 0; |
|
if(!ids.empty()) { |
|
// Get object and image points for the solvePnP function |
|
cv::Mat objPoints, imgPoints; |
|
board.matchImagePoints(corners, ids, objPoints, imgPoints); |
|
|
|
// Find pose |
|
cv::solvePnP(objPoints, imgPoints, camMatrix, distCoeffs, rvec, tvec); |
|
|
|
markersOfBoardDetected = (int)objPoints.total() / 4; |
|
} |
|
|
|
double currentTime = ((double)getTickCount() - tick) / getTickFrequency(); |
|
totalTime += currentTime; |
|
totalIterations++; |
|
if(totalIterations % 30 == 0) { |
|
cout << "Detection Time = " << currentTime * 1000 << " ms " |
|
<< "(Mean = " << 1000 * totalTime / double(totalIterations) << " ms)" << endl; |
|
} |
|
|
|
// Draw results |
|
image.copyTo(imageCopy); |
|
if(!ids.empty()) { |
|
aruco::drawDetectedMarkers(imageCopy, corners, ids); |
|
} |
|
|
|
if(showRejected && !rejected.empty()) |
|
aruco::drawDetectedMarkers(imageCopy, rejected, noArray(), Scalar(100, 0, 255)); |
|
|
|
if(markersOfBoardDetected > 0) |
|
cv::drawFrameAxes(imageCopy, camMatrix, distCoeffs, rvec, tvec, axisLength); |
|
|
|
imshow("out", imageCopy); |
|
char key = (char)waitKey(waitTime); |
|
if(key == 27) break; |
|
//! [aruco_detect_board_full_sample] |
|
} |
|
|
|
return 0; |
|
}
|
|
|