Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
321 lines
10 KiB
321 lines
10 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved. |
|
// Copyright (C) 2017, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "../precomp.hpp" |
|
#include "layers_common.hpp" |
|
#include <float.h> |
|
#include <algorithm> |
|
|
|
namespace cv |
|
{ |
|
namespace dnn |
|
{ |
|
class PermuteLayerImpl : public PermuteLayer |
|
{ |
|
public: |
|
void checkCurrentOrder(int currentOrder) |
|
{ |
|
if(currentOrder < 0 || currentOrder > 3) |
|
{ |
|
CV_Error( |
|
Error::StsBadArg, |
|
"Orders of dimensions in Permute layer parameter" |
|
"must be in [0...3] interval"); |
|
} |
|
|
|
if(std::find(_order.begin(), _order.end(), currentOrder) != _order.end()) |
|
{ |
|
CV_Error(Error::StsBadArg, |
|
"Permute layer parameter contains duplicated orders."); |
|
} |
|
} |
|
|
|
void checkNeedForPermutation() |
|
{ |
|
_needsPermute = false; |
|
for (size_t i = 0; i < _numAxes; ++i) |
|
{ |
|
if (_order[i] != i) |
|
{ |
|
_needsPermute = true; |
|
break; |
|
} |
|
} |
|
} |
|
|
|
PermuteLayerImpl(const LayerParams ¶ms) |
|
: _count(0), _needsPermute(false), _numAxes(0) |
|
{ |
|
if (!params.has("order")) |
|
{ |
|
return; |
|
} |
|
|
|
DictValue paramOrder = params.get("order"); |
|
if(paramOrder.size() > 4) |
|
{ |
|
CV_Error( |
|
Error::StsBadArg, |
|
"Too many (> 4) orders of dimensions in Permute layer"); |
|
} |
|
|
|
_numAxes = paramOrder.size(); |
|
|
|
for (size_t i = 0; i < _numAxes; i++) |
|
{ |
|
int currentOrder = paramOrder.get<int>(i); |
|
checkCurrentOrder(currentOrder); |
|
_order.push_back(currentOrder); |
|
} |
|
|
|
setParamsFrom(params); |
|
checkNeedForPermutation(); |
|
} |
|
|
|
bool getMemoryShapes(const std::vector<MatShape> &inputs, |
|
const int requiredOutputs, |
|
std::vector<MatShape> &outputs, |
|
std::vector<MatShape> &internals) const |
|
{ |
|
if(!_needsPermute) |
|
return true; |
|
|
|
CV_Assert(inputs.size() > 0); |
|
CV_Assert((int)_numAxes == inputs[0].size()); |
|
|
|
MatShape shapeBefore = inputs[0], shapeAfter; |
|
for (size_t i = 0; i < _numAxes; i++) |
|
{ |
|
shapeAfter.push_back(shapeBefore[_order[i]]); |
|
} |
|
|
|
outputs.clear(); |
|
|
|
for (size_t i = 0; i < inputs.size(); i++) |
|
{ |
|
CV_Assert(inputs[i][2] == shapeBefore[2] && inputs[i][3] == shapeBefore[3]); |
|
CV_Assert(total(inputs[i]) == total(shapeAfter)); |
|
outputs.push_back(shapeAfter); |
|
} |
|
|
|
return false; |
|
} |
|
|
|
void computeStrides(const MatShape &shapeBefore, const MatShape &shapeAfter) |
|
{ |
|
_oldStride.resize(_numAxes); |
|
_newStride.resize(_numAxes); |
|
|
|
_oldStride[_numAxes - 1] = 1; |
|
_newStride[_numAxes - 1] = 1; |
|
|
|
for(int i = _numAxes - 2; i >= 0; i--) |
|
{ |
|
_oldStride[i] = _oldStride[i + 1] * shapeBefore[i + 1]; |
|
_newStride[i] = _newStride[i + 1] * shapeAfter[i + 1]; |
|
} |
|
|
|
_count = _oldStride[0] * shapeBefore[0]; |
|
} |
|
|
|
void finalize(const std::vector<Mat*> &inputs, std::vector<Mat> &outputs) |
|
{ |
|
if(!_needsPermute) |
|
{ |
|
return; |
|
} |
|
|
|
CV_Assert(inputs.size() > 0); |
|
const Mat& inp0 = *inputs[0]; |
|
CV_Assert((int)_numAxes == inp0.dims); |
|
|
|
computeStrides(shape(*inputs[0]), shape(outputs[0])); |
|
} |
|
|
|
class PermuteInvoker : public ParallelLoopBody |
|
{ |
|
public: |
|
const Mat* inp; |
|
Mat* out; |
|
const std::vector<size_t>* order; |
|
int nstripes; |
|
|
|
static void run(const Mat& inp, Mat& out, const std::vector<size_t>& order, int nstripes) |
|
{ |
|
PermuteInvoker p; |
|
p.inp = &inp; |
|
p.out = &out; |
|
p.order = ℴ |
|
p.nstripes = nstripes; |
|
|
|
CV_Assert( out.size[0] == inp.size[order[0]] && |
|
out.size[1] == inp.size[order[1]] && |
|
out.size[2] == inp.size[order[2]] && |
|
out.size[3] == inp.size[order[3]]); |
|
|
|
parallel_for_(Range(0, nstripes), p, nstripes); |
|
} |
|
|
|
PermuteInvoker() : inp(0), out(0), order(0), nstripes(0) {} |
|
|
|
void operator()(const Range& r) const |
|
{ |
|
int n0 = out->size[0], n1 = out->size[1], n2 = out->size[2], n3 = out->size[3]; |
|
|
|
size_t orows = (size_t)n0*n1*n2; |
|
size_t stripeSize = (orows + nstripes - 1)/nstripes; |
|
size_t stripeStart = r.start*stripeSize; |
|
size_t stripeEnd = std::min(r.end*stripeSize, orows); |
|
|
|
const size_t esz = sizeof(float); |
|
size_t ostep0 = out->step[0]/esz, ostep1 = out->step[1]/esz, ostep2 = out->step[2]/esz; |
|
const size_t* ord = &order->at(0); |
|
size_t istep0 = inp->step[ord[0]]/esz, istep1 = inp->step[ord[1]]/esz, |
|
istep2 = inp->step[ord[2]]/esz, istep3 = inp->step[ord[3]]/esz; |
|
|
|
size_t val = stripeStart; |
|
int i2 = (int)(val % n2); |
|
val /= n2; |
|
int i1 = (int)(val % n1); |
|
int i0 = (int)(val / n1); |
|
|
|
const float* inptr_orig = inp->ptr<float>(); |
|
float* outptr_orig = out->ptr<float>(); |
|
|
|
for( size_t ofs = stripeStart; ofs < stripeEnd; ofs++ ) |
|
{ |
|
const float* inptr = inptr_orig + i0*istep0 + i1*istep1 + i2*istep2; |
|
float* outptr = outptr_orig + i0*ostep0 + i1*ostep1 + i2*ostep2; |
|
|
|
for( int i3 = 0; i3 < n3; i3++ ) |
|
outptr[i3] = inptr[i3*istep3]; |
|
|
|
if( ++i2 >= n2 ) |
|
{ |
|
i2 = 0; |
|
if( ++i1 >= n1 ) |
|
{ |
|
i1 = 0; |
|
if( ++i0 >= n0 ) |
|
break; |
|
} |
|
} |
|
} |
|
} |
|
}; |
|
|
|
void forward(std::vector<Mat*> &inputs, std::vector<Mat> &outputs, std::vector<Mat> &internals) |
|
{ |
|
CV_TRACE_FUNCTION(); |
|
CV_TRACE_ARG_VALUE(name, "name", name.c_str()); |
|
|
|
size_t k, ninputs = inputs.size(); |
|
if(!_needsPermute) |
|
{ |
|
for (k = 0; k < ninputs; k++) |
|
outputs[k] = *inputs[k]; |
|
} |
|
else |
|
{ |
|
size_t i, j, count = _count, numAxes = _numAxes; |
|
const size_t* newStride = &_newStride[0]; |
|
const size_t* oldStride = &_oldStride[0]; |
|
const size_t* order = &_order[0]; |
|
|
|
for (k = 0; k < ninputs; k++) |
|
{ |
|
const Mat& inp = *inputs[k]; |
|
Mat& out = outputs[k]; |
|
|
|
CV_Assert(inp.dims == numAxes && inp.size == inputs[0]->size); |
|
CV_Assert(out.dims == numAxes && out.size == outputs[0].size); |
|
|
|
CV_Assert(inp.isContinuous() && out.isContinuous()); |
|
CV_Assert(inp.type() == CV_32F && out.type() == CV_32F); |
|
|
|
if( numAxes == 4 ) |
|
{ |
|
int nstripes = getNumThreads(); |
|
PermuteInvoker::run(inp, out, _order, nstripes); |
|
} |
|
else |
|
{ |
|
const float *srcData = inp.ptr<float>(); |
|
float *dstData = out.ptr<float>(); |
|
|
|
for (i = 0; i < count; ++i) |
|
{ |
|
size_t oldPosition = 0; |
|
size_t newPosition = i; |
|
|
|
for (j = 0; j < numAxes; ++j) |
|
{ |
|
oldPosition += (newPosition / newStride[j]) * oldStride[order[j]]; |
|
newPosition %= newStride[j]; |
|
} |
|
dstData[i] = srcData[oldPosition]; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
size_t _count; |
|
std::vector<size_t> _order; |
|
|
|
std::vector<int> _oldDimensionSize; |
|
std::vector<int> _newDimensionSize; |
|
|
|
std::vector<size_t> _oldStride; |
|
std::vector<size_t> _newStride; |
|
bool _needsPermute; |
|
|
|
size_t _numAxes; |
|
}; |
|
|
|
Ptr<PermuteLayer> PermuteLayer::create(const LayerParams ¶ms) |
|
{ |
|
return Ptr<PermuteLayer>(new PermuteLayerImpl(params)); |
|
} |
|
|
|
} |
|
}
|
|
|